
The Technical Design Report (TDR) for SAND in the ND complex

Paolo Bernardini, Lecce SAND General Meeting November 12th, 2024

An overleaf is adopted according to LATEX conventions for LBNF/DUNE documents

shared with SAND people + J. Lewis H.A. Tanaka (ND tech. coordinator) A.E. Heavey (scientific editor)

> The figures in sand-figure and the files in sand-tdr are input for sand-main.tex

> > Dedicated overleaf for GRAIN and SOFTWARE Working Groups, periodically copied in main overleaf

~ 📂 sand-tdr

abstract.tex

- analysis.tex
- computing.tex

🖿 daq.tex

- ecal.tex
- 🖿 example.tex
- 🖿 grain_old.tex
- 🖿 grain.tex
- 🖹 l&l.tex
- 🖿 magnet.tex
- 🖿 management.tex
- my_citedb.bib
- my_final.tex
- my_glossary.tex
- overview.tex
- reconstruction_old.tex
- reconstruction.tex
- safety.tex
- schedule.tex

Sections in the SAND chapter

- 1. Overview (requirements & opportunities)
- 2. Lead/Scintillating-Fiber Calorimeter (ECAL)
- 3. Superconducting Magnet
- 4. Liquid Argon Active Target (GRAIN)
- 5. Tracker
- 6. Data Acquisition (DAQ) Architecture
- 7. Detector Control (DCS)
- 8. Detector Safety System (DSS)
- 9. Software & Computing
- 10. Event Reconstruction
- 11. Analysis
- 12. Installation & Integration
- 13. Safety
- 14. Organization & Management
- 15. Time Schedule
- 16. Possible Upgrades

my_glossary.tex my_citedb.bib New DUNE words and new references in evidence (at the file end)

1.1	Overvi	ew
	1.1.1	Requirements and SAND Role
	1.1.2	Requirements and SAND Role 2 The Overall Design of SAND 3
		Derived SAND Capabilities
	1.1.4	Opportunities for SAND

Updated according to the task-force document (approved in DUNE general meeting, May 2024)

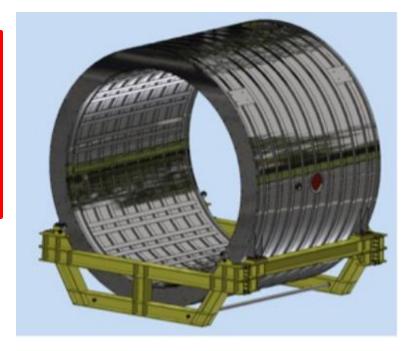
To do: careful reading and corrections (LS e CM)

Possible improvements (mainly in Sec. 1.1.4)

1.2	Lead/S	cintillating-Fiber Calorimeter (ECAL)
	1.2.1	Design and Structure
	1.2.2	Performance in KLOE Experiment
	1.2.3	Requirements for ECAL
	1.2.4	Calibrationand Monitor System18Electronics119
	1.2.5	Electronics
	1.2.6	Dismounting Procedures
	1.2.7	Revamping and Test before SAND Installation
	1.2.8	Installation & Integration
	1.2.9	Risk Management
	1.2.10	Schedule and Milestones

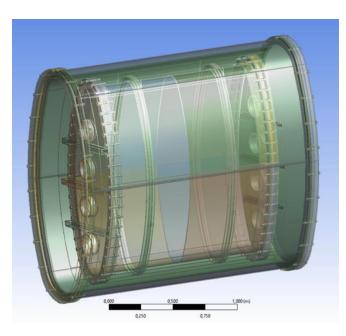
Draft available in time

- July 22-23, 2024 Preliminary Design Review (PDR)
 - To be updated according to PDR recommendations

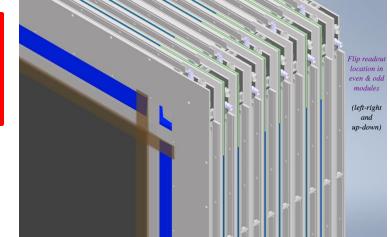

Expand hazard & risk analysis, shipping details, resources loaded schedule and cost analysis Gantt & milestones to be updated

Refinements expected within November 30

1.3	The S	uperconducting Magnet
	1.3.1	Magnet Specification
	1.3.2	Magnet Specification74Magnet Maintenance and Revamping Options25 pagesActivities at Laboratori Nazionali di Frascati86
	1.3.3	Activities at Laboratori Nazionali di Frascati
	1.3.4	Installation & Integration at Fermilab
	1.3.5	Risk Management
	1.3.6	Schedule and Milestones


Draft available in time
 July 22-23, 2024 - Preliminary Design Review (PDR)
 To be updated according to recommendations
 Update of design, dismounting and shipping of the yoke
 Possible improvements (mainly in Sec.s 1.3.4, 1.3.5, 1.3.6)

Refinements expected within November 30



.4	LAr Ac	tive Target (GRAIN)
	1.4.1	Introduction and Physics Requirements
	1.4.2	Mechanical Design
	1.4.3	Optical Detector
		Readout System
	1.4.5	Data Acquisition and Slow Control System
	1.4.6	Data Acquisition and Slow Control System 30 pages Neutrino Event Reconstruction 105
		Calibration System
	1.4.8	Cryogenic System
	1.4.9	First Commissioning in Laboratori Nazionali di Legnaro
	1.4.10	Integration and Installation in SAND

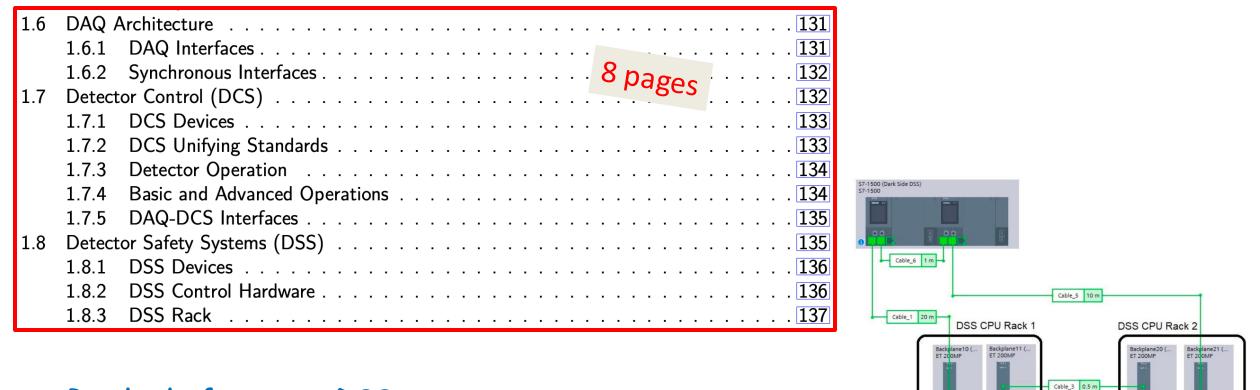
- mechanics - physics requirements Present - lens description - SiPM arrays - ASIC requirements - coded mask description - reconstruction with voxels* * in another To be completed - 3D reconstruction* - performances section ? To be written – prototypes - DAQ & slow control - calorimetry - calibration - cryogenics - integration & installation Next check: November 15 Complete draft: November 30 UNIVERSITÀ Del SALENTO INFN P. Bernardini - November 12th, 2024 7

1.5	Tracke	er
	1.5.1	STT
	1.5.2	Drift Chamber
	1.5.3	Gas System

Present - figures and tables about STT geometry

Missing - 14 subsubsections about STT

- subsection about Drift Chamber
- subsection about Gas System


Next check: November 30

Complete draft: December 2024

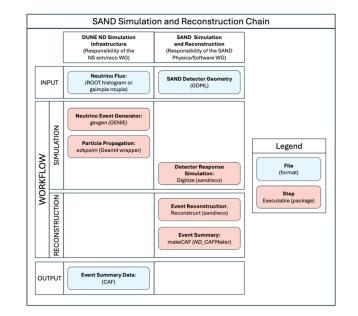
INFN

Ready draft

- DSS

P. Bernardini - November 12th, 2024

To be completed - DAQ (expected data rates, interfaces) - DCS (preliminary layout, DAQ interfaces)


Complete draft: December ??

Cable 2 0.5 m

Cable_4 0.5 m

1.9	Softwa	re and Computing
	1.9.1	Code
	1.9.2	Simulations
	1.9.3	Simulations
		Data Formats
	1.9.5	Computing resources
	1.9.6	Visualization
	1.9.7	Integration \ldots

INFN

Present

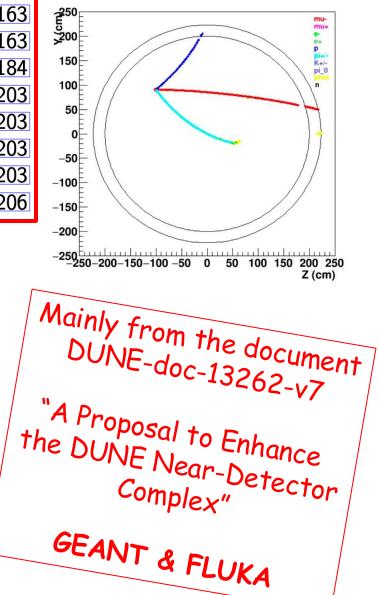
- GRAIN simulation ECAL simulation & clustering
 - Kalman filter (with B) edep-sim output

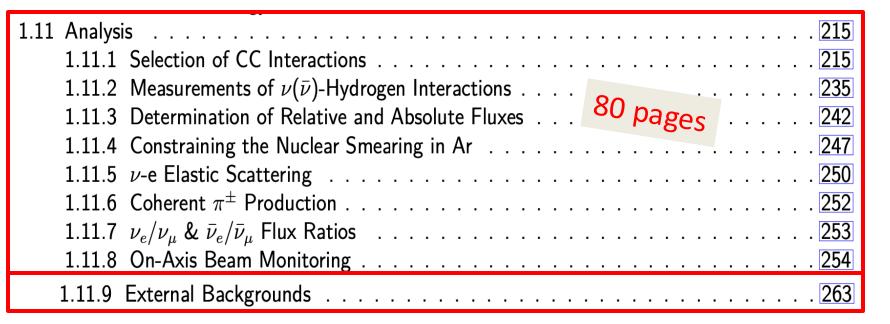
Missing

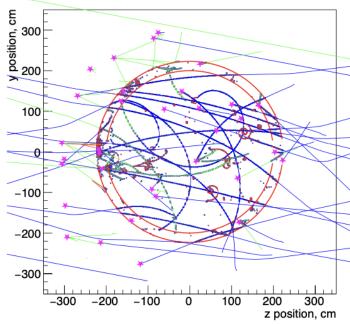
- simulation of v fluxes, geometries
 - reconstruction in GRAIN*, ECAL
 - Common Analysis Files computing architecture
 - event display

- integration

Complete draft: December 2024




1.10	Event	Reconstruction (Performance) \ldots
-		Single Particle Reconstruction
	1.10.3	Particle Identification
	1.10.4	Event Reconstruction in GRAIN
	1.10.5	Tracker and CC Acceptance for Muons, Protons, Pions
	1.10.6	Event Reconstruction in STT
	1.10.7	Neutrino Energy Reconstruction in Inclusive CC Events


- single particle reconstruction Present e, π^{0} , γ , p, n, K⁰, Λ^{0} helix 3D fit in STT and ToF method

- particle ID (e, p, μ , π)
- neutrino energy reconstruction
- To write reconstruction in GRAIN*
 - approach to identify neutrino event in the spill

Present

- selection of CC interactions (v_{μ} , anti v_{μ} , v_{e} , anti v_{e})
- v-H interactions

- possible new topics

P. Bernardini - November 12th, 2024

- measurement of fluxes
- nuclear smearing in Ar v-e scattering
- coherent π production on-axis beam monitoring $-v_e/v_u$ ratio
 - external backgrounds

From the document DUNE-doc-13262-v7

"A Proposal to Enhance the DUNE Near-Detector Complex" - careful reading and corrections (volunteers are welcome)

To do

To be written

1.12 Installation & Integration
1.12.1 Organizational Structure and Sharing of Responsibilities
1.12.2 Transport and Handling
1.12.3 Experimental Hall and Facilities
1.12.4 Cryogenics and Gas Distribution
1.12.5 Installation Sequence
1.12.6 Critical and Special Lifts
1.12.7 Commissioning
1.12.8 Safety
1.12.9 Risk Matrix and Risk Management
1.13 Safety
1.13.1 Applicable Codes and Standards
1.13.2 Organizational Structure
1.13.3 ORC List
1.13.4 Risk Matrices
1.13.5 Risk Mitigation and Management
1.14 Organization & Management
1.14.1 Contribution by Istituto Nazionale di Fisica Nucleare
1.14.2 Contribution by Fermi National Accelerator Laboratory
1.15 Time Schedule
1.15.1 Resource-Loaded High Level Schedule
1.15.2 Working Groups Specific Resource-Loaded Schedules
1.15.3 Milestones
1.15.4 Schedule-Related Risks
1.15.5 Schedule-Related Risk Mitigation and Management
1.16 Possible Upgrades
1.16.1 GRAIN Charge Readout
1.16.2 New Targets

Present: tables about sizes, weights and storage @ FNAL of yoke, coil and calorimeter

Expected: November 30

Present: time schedule from the single sections

Complete draft: December 2024

INFN

Present: 318 pages

259 figures 65 tables 2. Lead/Scintillating-Fiber Calorimeter (ECAL) } 91 pages - to be updated

- 3. Superconducting Magnet
- 4. Liquid Argon Active Target (GRAIN) 30 pages in progress
- 5. Tracker 6 pages at the beginning
- 6. Data Acquisition (DAQ) Architecture
- 7. Detector Control (DCS)
- 8. Detector Safety System (DSS)
- 9. Software & Computing 26 pages at the beginning
- 10. Event Reconstruction 52 pages to be completed
- 11. Analysis

80 pages – to be checked

- 12. Installation & Integration
- 13. Safety
- 14. Organization & Management
- 15. Time Schedule
- 16. Possible Upgrades

At the very beginning (some tables) 1-2 pages for each section Indexes and keywords are defined

8 pages - to be completed

Long todo-list

Essentialy missing or wrong references

Standardize (as possible) quantity names, reference systems and so on

Each author is responsible of his/her section He/she introduces update when necessary

Check priorities

Physics and coherence English language Rules of the DUNE documents

but ...

Todo list

complete the sentence	65
an example of the relevant safety standards at Fermilab	
per o for ??	
reference?	
reference ?	
figure 4.7 ?	
BOLOGNA now	
reference ?	104
equation ?	112
to be completed ?	
to be completed ?	135
to be completed ?	135
citazioni ?	144
reference ?	144
insert a reference	
insert a reference	147
insert a reference in the figure caption	147
insert a reference	
insert a reference in the figure caption	147
insert a reference	147
insert a reference	149
insert a reference	149
manca la citazione	158
insert a reference	159
necessary to check the formula	160
insert a reference	161
??	167
reference ?	213
correct ?	223
correct ?	223
correct ?	223
correct ?	230
correct ?	232
correct ?	232
correct ?	232

Instructions for the authors

- Insert the reference in the bibliography (bibitex format)
- Check if some word is present in the glossary and use it
- Insert new words in the glossary
- Check the reference to equations, figures, tables
- Write your name in the text %% author?
- Take into account the DUNE editing rules

https://dune.bnl.gov/docs/guidance.pdf

SAND: Design Milestones

SYSTEM	DECISION	Date
SAND	GRAIN inner cryostat material	2024
SAND	Tracker technology	2025 Q3
SAND	ECAL readout	2025 Q1
SAND	GRAIN outer vessel material	2025 Q4
SAND	GRAIN readout configuration	2025 Q4

- SAND is on the path to preliminary design.
 - A few major decisions (Tracker, GRAIN readout configuration) remain pending prototyping results
- Some elements (Magnet, ECAL) are built and undergoing refurbishment
 - Close coordination is needed to ensure smooth compliance and testing process at FNAL.

SYSTEM	Review	Date
SAND	KLOE-2-SAND Preliminary Design Review	2024 Q2
ND-LAr Cryostat	Preliminary Design Review	2024 Q3
TMS	Preliminary Design review	2025 Q1
PRISM	Preliminary Design review	2025 Q1
ND-LAr	Final Design Reviews start	2025 Q1
ND-LAr/TMS	ND Director's Review and IPR status review	2025 Q2
SAND	GRAIN readout configuration	2025 Q4

RECENT AND UPCOMING REVIEWS

INFN

Istituto Nazionale di Fisica Nue

Uiro	Tanaka, September 9, 2024
HILO	Collaboration Meeting
	Collaboration Meeting

	Chapter Draft	Design Review	Ready for LBNC
Intro/Physics	Jun 24	N/A	Jul 24
ND-LAr (final)	Nov 24	Dec 24	Feb 25
TMS	Nov 24	Jan 25	Feb 25
SAND*	Jun 24-Feb 25	Jul 24-Mar 25	Apr 25
ND-LAr Cryostat	Jun 24	Jul 24	Aug 24
NS LAr Cryogenics	Jun 24	N/A	Aug 24
DUNE-PRISM	Nov 24	Dec 24	Jan 25
ND DAQ	Nov 24	Jan 25	Feb 25
ND Slow Control			Feb 25
ND I&I	Nov 24	Dec 24	Jan 25

* SAND will divide process into KLOE-2-SAND, Tracker, GRAIN, Integration

Final remarks

* Main part of data are available, it's just a matter of writing

- > Some sections to be written and completed
- > Go on with the editing according to DUNE rules
- > Involve other people as authors, when necessary
- * What measurement to evaluate the TDR progress ?
 - Empty sections !
 - > Number of pages: 319!
 - > Text quality ? SAND internal reading to "measure" the text quality

* Within 2024 end: first complete draft to be read and corrected (in DUNE-docdb)

Backup slides

Glossary

my_glossary.tex

Insert new DUNE words and new DUNE abbreviations at the end of this file

Check if the word is already present

To define a DUNE term that has no abbreviation use:

\newduneword{label}{term}{description}

To define a DUNE term with an abbreviation use:

\newduneabbrev{label}{abbrev}{term}{description}

Examples

- \newduneword{detmodule}{detector module}{The entire DUNE far detector is
 segmented into four modules, each with a nominal \SI{10}{\kton}
 fiducial mass}
- \newduneabbrev{adc}{ADC}{Analog Digital Converter}{A sampling of a voltage
 resulting in a discrete integer count corresponding in some way to
 the input}

Bibliography

my_citedb.bib

Insert references (bibtex format) at the end of this file

Check if the reference is already present

DUNE Words from the glossary

\dfirst{fnal}first timeFermi National Accelerator Laboratory (Fermilab)\dword{fnal}following timesFermilab

More informations in the glossary

Fermi National Accelerator Laboratory (Fermilab) U.S. national laboratory in Batavia, IL. It is the laboratory that hosts <u>Deep Underground Neutrino Experiment (DUNE)</u> and serves as its near site. <u>1</u>

\dfirst{nd}	near detector (ND)	with link
\dword{nd}	ND	with link
\dlong{nd}	near detector	w/o link
\dshort{nd}	ND	w/o link

\dwordsingular\dwordslower case & plural\Dwordcapital\Dwordscapital & plural

common/units.tex to define commands for units

Examples

"m" is written \si{\meter} bare units "V" is written $si{\overline{volt}}$. "123.456" is written as \num{123.456}. bare numbers " $1\pm 2i$ " is written as $num{1+-2i}$. " 3×10^{45} " is written as \num{3e45}. " 0.3×10^{45} " is written as \num{.3e45} numbers and units "120 GeV" is written as $SI{120}{\text{GeV}}$,

"4850 ft" is written as $SI{4850}{\text{tt}}$,

JPEG use for photographs

PDF use of any line drawings, plots, illustrations

PNG use due to some inability to produce proper JPEG or PDF (contact editors)

Please, complete the plots with axis labels and measurement units

English

- Use American spelling: e.g., ionization (not ionisation), flavor (not flavour) and so on.
- In general, avoid use of first person (e.g., I, we, our). "We" may appear in introductory sections.
- Avoid use of second person, i.e., "you."

Many many rules/instructions in the writing of DUNE documents :

https://github.com/DUNE/document-guidance/releases/

https://ctan.mirror.garr.it/mirrors/ctan/macros/latex/contrib/siunitx/siunitx.pdf

https://dune.bnl.gov/docs/technical-proposal/dune-words.pdf

https://ctan.mirror.garr.it/mirrors/ctan/macros/latex/contrib/glossaries/glossaries-user.pdf glossary

An almost synthetic guidance (49 pages)

https://dune.bnl.gov/docs/guidance.pdf

Help by Anne Heavey, scientific editor at FNAL

Latex structure

units

DUNE words

Hiro Tanaka, September 9, 2024 Collaboration Meeting

	Chapter Draft	Design Review	Ready for LBNC
Intro/Physics	Jun 24	N/A	Jul 24
ND-LAr (final)	Nov 24	Dec 24	Feb 25
TMS	Nov 24	Jan 25	Feb 25
SAND*	Jun 24-Feb 25	Jul 24-Mar 25	Apr 25
ND-LAr Cryostat	Jun 24	Jul 24	Aug 24
NS LAr Cryogenics	Jun 24	N/A	Aug 24
DUNE-PRISM	Nov 24	Dec 24	Jan 25
ND DAQ	Nov 24	Jan 25	Feb 25
ND Slow Control			Feb 25
ND I&I	Nov 24	Dec 24	Jan 25

* SAND will divide process into KLOE-2-SAND, Tracker, GRAIN, Integration

More details for SAND

Preliminary Design Review

topics

✓ Jul 2024	ECAL + magnet
Nov 2024	1&1
Dec 2024/Jan 2025	GRAIN
Mar 2025	Tracker

Review of TDR chapter draft

Jan 2025

Feb 2025

Mar 2025

reviewer

INFN

SAND consortium DUNE collaboration LBNC

