
DUNE/ProtoDUNE
Databases

Norm Buchanan for DB Group

(thanks to Ana Paula, Hajime, and Alex Rahe for slides)

11/6/2024 1

DUNE Database Systems

11/6/2024 2

While I am referring to the DUNE database system, most of what I am
discussing today pertains to the databases used for ProtoDUNE.

Certain parts of the system will be different for DUNE, specifically the
systems feeding the IFBeam and Slow Control backend databases)

The DUNE database system comprises several backend databases (DAQ
config, Slow Control, IFBeam, Calibration, and Data Quality).

All of these backend databases feed a Master Store (unstructured)
database (UconDB), and a subset of information from this master store is
then copied into a relational database (Conditions DB) that provides an
interface for offline users. This approach was taken to enable the greatest
degree of flexibility – the UconDB doesn’t require a schema a priori.

Additionally, a hardware database is used for ProtoDune and DUNE to
store information regarding hardware and related testing data.

3

Metadata and conditions data

• Metadata: all information that describes the data
• Conditions metadata: non-event data required to correctly reconstruct or process

detector event data, subset of metadata

Conditions data examples:

• Run configuration parameters

• Detector calibration and alignment data

• Monitoring information

• Some slow control parameters - high voltage

Databases to store metadata
Master store of

metadata Conditions
database

Metadata stream

Metadata is sent from all databases to the Master store of metadata (UconDB)

4

FNALCERN

Readiness
Working

In development

DIP
Service

ProtoDUNE Database System

Current DB Projects

11/6/2024 5

The following projects are currently under development (details given
later in this presentation):

• Conditions DB (Ana Paula)
• DAQ Configuration (Ana Paula)
• Slow Control (Nilay Bostan)
• IFBeam (Ana Paula)
• Data Quality (Megan Wrobel, Norm)
• Caching (Alex Rahe – until Spring 2025)
• Hardware Database (Hajime and Alex Wagner)
• Documentation (all – using Software Carpentry with David Demuth’s

assistance)

All of the above have been implemented, in whole or in part, for the
horizontal drift detector. We are currently gathering information to do the
same for the vertical drift detector. We don’t expect significant differences
between the two.

Uncovered DB Projects

6

The following projects we will need to have completed but haven’t had the
resources to tackle as of yet:

• Scaling of conditions DB
• Near Detector Databases
• Monitoring and Messaging/Alarms far all databases (partially uncovered)
• Calibration DB (Calib group using the FNAL conditions DB infrastructure)

Conditions DB scaling and ND databases needed for DUNE have a somewhat
lower priority than the ProtoDUNE databases.

Given the current level of resources available to the DB group most of these
tasks are considered medium priority and we expect that they will be
undertaken in 2026.

We are cognizant of the fact that we will need to work DC planning into our
thinking.

Status of Conditions DB

11/6/2024 7

The conditions DB for the HD detector is largely complete – 80% level

Tasks that are not as advanced:
• Web interface (50%)
• Defining tables (including VD detector) (50%)
• Monitoring/Messaging (~20%)
• Scaling (0%)

Current effort level is appropriate to complete most tasks,

Monitoring: 25%-50% of a postdoc or advanced graduate student
Scaling: 25%-50% of a postdoc (potentially with student help)

High Priority

Master Store of
Metadata (UconDB)

Main characteristics

• Central place that can store all metadata

• Avoids a priori schema

• It store blobs of information

Implementation

• PostgreSQL database

• It is an unstructured database

• Python API interface

• Command line interface

• Code now on FNAL git

8

Conditions database

9

Main characteristics

• Store subset of metadata, conditions data of each run

• Needs to have a schema

• It store metadata in table

Implementation

• PostgreSQL database

• Structured database with tables

• Interfaces: Python, command line, Art, C++,
and Metacat

• Code now on FNAL git

Database schema, where the conditions_# payloads
represent all the conditions parameters in the database

Status of Run Conditions table

11/6/2024 10

The DAQ config DB for the HD detector is complete within requested
modifications (eg. changing format from JSON to XML) – 70% level.

Tasks needing effort:
• Modifications to table-specific scripts (90%)
• Define table parameters (70 %)
• Add specific info, like slow controls

Current effort level is appropriate to complete most task

High Priority

11

ht
tp

s:
//

w
ik

i.d
u

ne
sc

ie
n

ce
.o

rg
/w

ik
i/

R
un

_C
on

di
ti

o
ns

_T
ab

le
#T

ab
l

e_
in

fo
rm

at
io

n
Run conditions table

Status of DAQ Configuration DB

11/6/2024 12

The DAQ config DB for the HD detector is complete within requested
modifications (eg. changing format from JSON to XML) – 70% level.

Tasks needing effort:
• Modifications to API (85%)
• Working with DAQ group to obtain information not in DAQ online

database (70 %)
• Monitoring/Messaging (~30%)

Current effort level is appropriate to complete most tasks, but a person
working on monitoring would be helpful

Monitoring: 25%-50% of a postdoc or advanced graduate student

High Priority

Status of Hardware DB

11/6/2024 13

A production version of the HWDB is available and in use by some of the
hardware consortia (90% complete) (planning underway for a person or
two to facilitate interfacing between CS&C DB group and hardware teams).

Tasks that ongoing:
• Development based on feedback (80%)
• Training (75%)

Current effort level is appropriate to complete tasks – will need a modest
level of support for maintaining the DB through the construction and
commissioning of DUNE detectors (ND and FD) and somewhat less longer
term.

High Priority

NOV/2024Hajime Muramatsu U of Minnesota
1

4

Status of the HWDB
and helper applications

- The two PostgreSQL based databases,

production version and development version,

have been up&running stably.

- Various functionalities have been added/modified in the last ~two years.

(see the next 2 pages)

- It is ready to accept massive inputs.

Some groups have uploaded sizable data to the development version.

- However, not all consortia have tested against the dev. version, yet.

And so, obviously, almost none have been uploaded to the pro. version.

NOV/2024Hajime Muramatsu U of Minnesota
1

5

the HWDB - 1

- Offers the WEB-UI (intuitive) and the REST API (for massive uploads).

- It can store;

‣ each component spec

‣ the corresponding location (and its received time)

‣ links to its parent and/or daughter components, if any

‣ the corresponding images, and csv files and spreadsheets.. etc.

The limit on sizes/types of these files are to be determined.

‣ the corresponding (QC/AC) test results

along with their histories and their searching functionalities.

NOV/2024Hajime Muramatsu U of Minnesota
1

6

- Just had the 2nd HWDB tutorials in this past July.

And we have the corresponding training site:

https://dune.github.io/computing-HWDB/

Most of the HWDB liaisons from each consortia attended.

Yet, do not see many users are even testing with the dev. version, yet.

- Recently created a “QuickStart” user guide page to use the Python-

based app: https://dune.github.io/computing-HWDB/quickstart/

It provides an example spreadsheet (acts as a general purpose

template), which can be downloaded and be used “as it is”.

Hopefully this would encourage users to start to test uploading.

Plans going forward on HWDB - 1

https://dune.github.io/computing-HWDB/
https://dune.github.io/computing-HWDB/quickstart/

NOV/2024Hajime Muramatsu U of Minnesota
1

7

- We are also planning to start to communicate with individual HWDB

liaisons and find out what statues of their preparations to upload their

data and their needs, such as;

‣ our helps on mapping their component (PID) hierarchy

(system -> subsystem -> component types)

and producing their DB schema,

‣ requests to update the apps or to provide more specific

examples/templates.

‣ or possibly requests to modify/add the HWDB functionalities

(hopefully we already have the DB ready for their needs by now)

Plans going forward on HWDB - 2

NOV/2024Hajime Muramatsu U of Minnesota
1

8

While we will keep improving, updating and maintaining the existing apps,

we will be also searching for;

1. an easier way to deploy the two iOS-based app,

2. possible needs/demands for Android-based app,

3. and also needs for GUI version of the Python-based app.

Plans going forward on the apps

As for the item 1, we currently deploy the apps through Apple’s TestFlight.

This requires to go through Apple’s non-public app store.

It has caused issues previously, when we wanted to deploy our new release

(e.g., bug fix) but the app store was very crowded (slow), which tends to

happen when there is a new version of Xcode.

As for the items 2 and 3, we will do them only if there is a demand.

Status of DB Caching

11/6/2024 19

Project is in its initial stages (≲10%)

Tasks that need effort:
• Requirements (Manager)
• Implementation (Expert/Postdoc/GS)
• Initial Testing (Expert/Postdoc or GS)
• Scaling (Expert/Postdoc)

Current effort level is insufficient to accomplish this project – would like
additional support starting in CY 2025 is needed

High Priority

Frontier for DUNE

● Used as a caching system for ATLAS, CMS, and CDF
○ Scalable

● Customizable architecture
● Load balancing
● Data compression
● Open Source

Database Caching

Frontier for DUNE

● Frontier servers hosted on Metis cluster at NIU
○ 1 Squid server and 1 Tomcat server
○ Can use Frontier client to access calibration database

● DUNE calibration database access is overseen by a modified libcurl
library in the ifdhc project

● Currently working to add the ability to resolve the Frontier client URL to
this modified library

● Future Steps: Testing
○ Simulate many jobs accessing calibration data simultaneously

Database Caching

Status of Slow Control DB

11/6/2024 22

Some development has been done building on work Lino did last year.
Path from the backend system to the UconDB has been demonstrated
with a single instrument. Currently not working

Tasks that need to be done:
• Fix backend system (Expert/Postdoc)
• Granularity Studies (Postdoc/GS)
• Complete list of instrument (50%)
• Monitoring/Messaging (~20%)
• Scaling (0%)

Current effort level is appropriate to complete most tasks,

Monitoring: 25%-50% of a postdoc or advanced graduate student
Scaling: 25%-50% of a postdoc (potentially with student help)

High Priority

23

Slow Control REST API

• Is deployed on a DUNE CERN VM

– Ana Paula, and other DUNE members, have access to the VM

– To get access we contact AP

• It’s not currently working

– Lino wrote it, and now Ana Paula in contact with David to fix it

– A password has to be updated every ~6 month

– Might need to be deployed again

Status of Other Database Projects

11/6/2024 24

IFBeam

Mostly in place – tasks similar to those for Slow Control DB

Tasks that need to be done:
• Granularity Studies (O(1%) Postdoc/GS)
• Complete list of desired instrument (50%)
• Monitoring/Messaging (50% Postdoc/GS)

Current effort level is appropriate to complete most tasks, but having
some additional effort for monitoring and granularity studies.

High Priority

DQ DB

New effort so not much to say yet. This should not be a particularly large
task. Current effort level is appropriate and we expect to have it in place
early in CY 2025.

Medium/High Priority

Conclusions

11/6/2024 25

Most of the projects are well under development with the effort needed in place.
High Priority:
• Conditions database (~60%) – might need extra effort for scaling
• Run conditions table (~70%) – current effort level is appropriate
• DAQ configuration database (~70%) – current effort level is appropriate
• Hardware database (~90%) - current effort level is appropriate, modest level of

support for maintainance
• Caching (~10%) – additional support is needed
• Slow controls (~30%) – might need extra effort for scaling
• IFBeam (~70%) - might need extra effort for scaling
Medium / Low
• HSF conditions database (~30%) - additional support is needed or moved to a

latter time
• Calibration tables
• Documentation and training

Backup Slides

11/6/2024 26

27

Conditions database - interfaces
The documentation for the python API, command Line interface, and the REST API was recently updated

https://fermisda-condb2.readthedocs.io/en/stable/rest.html

• URL: https://dbdata0vm.fnal.gov:9443/dune_runcon_prod

• Folder/Table name: pdunesp.run_conditionstest

• User and password are not needed for getting the data, if you need to upload contact DB group

https://fermisda-condb2.readthedocs.io/en/stable/rest.html
https://dbdata0vm.fnal.gov:9443/dune_runcon_prod

28

Conditions database – Outputs

• The python API and the rest API can

return the data from the tables in JSON

or csv format.

• With the python API it is possible to get

a selection of runs that comply with one

or multiple conditions on the table

parameters, like:

– Beam momentum = -1 GeV

– Gain = 14

29

Run conditions table – C++ interface
https://wiki.dunescience.org/wiki/Run_Conditions_Table#Table_information

30

Run conditions table – ART service
• Service name: pdune_runconditions

• Fhicl file inputs:

• Table URL = https://dbdata0vm.fnal.gov:9443/dune_runcon_prod
• Table Name = pdunesp.run_conditionstest
• Run Number = 28000
• Run Number 1 = 0
• DB tab = ‘v1.1’

Examples and documentation

• Wiki

https://wiki.dunescience.org/wiki/Run_Conditions_Table#Table_information
• c++ example of how to access the data from the runs condition table

/dunecalib/ConInt/getRunConditionsPDUNE.cc
• For the art service

/dunecalib/ConIntServices/RunConditionsServicePDUNE_service.cc
/dunecalib/ConintServices/runconditions_pdune.fcl

https://dbdata0vm.fnal.gov:9443/dune_runcon_prod

31

Conditions database – Metacat interface

Goal: Look for data files using parameters from the run conditions table as filters

The following query is an example of how to write the queries:
 filter dune_runshistdb() (files from hd-protodune:hd-protodune_25016)

 where runs_history.run_type = PROD

https://wiki.dunescience.org/wiki/Run_Conditions_Table#Table_information

filter name

dataset of files to look from

filter using the run condition parameter

New filters can be made for other tables in the conditions database

NOV/2024Hajime Muramatsu U of Minnesota
3

2

the HWDB - 2

- Users do need to define DB schema for each types in YAML (e.g., JSON).

However, defining an empty value, such as “DATA: {}”, would allow to

have any JSON structure inside of its blob without defining any scheme.

This feature could be useful when/if one needs to transfer data from a

JSON-oriented 3rd database.

NOV/2024Hajime Muramatsu U of Minnesota
3

3

- iPad version: Provides intuitive UI, access to drawings/assembly

procedures, scans bar/QR-codes.

- Python-based app: (so far) runs at command-line. Takes spreadsheets

as inputs and upload them.

- iPhone version: Useful to quickly scan bar/QR-codes and update

location info in the HWDB. Also provides stored component info.

3 helper applications (so far...)

	Slide 1: DUNE/ProtoDUNE Databases
	Slide 2: DUNE Database Systems
	Slide 3
	Slide 4: Metadata stream
	Slide 5: Current DB Projects
	Slide 6: Uncovered DB Projects
	Slide 7: Status of Conditions DB
	Slide 8: Master Store of Metadata (UconDB)
	Slide 9: Conditions database
	Slide 10: Status of Run Conditions table
	Slide 11
	Slide 12: Status of DAQ Configuration DB
	Slide 13: Status of Hardware DB
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Status of DB Caching
	Slide 20: Frontier for DUNE
	Slide 21: Frontier for DUNE
	Slide 22: Status of Slow Control DB
	Slide 23
	Slide 24: Status of Other Database Projects
	Slide 25: Conclusions
	Slide 26: Backup Slides
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

