
Weekly CCE-SOP Meeting
20 November 2024

RNTuple API Review:
ATLAS Framework
Open Items/Close Out
Alaettin Serhan Mete1, Marcin Nowak2, Peter Van Gemmeren1

1Argonne National Laboratory, 2Brookhaven National Laboratory

Current Status of RNTuple in ATLAS/Athena
● Athena has a fully functional prototype for some time now
○ Over 80 MRs with the first one dating as early as January 2023
○ Already integrated into CI/CD (DAOD) and larger-scale release tests (more)

2

CI ART

● In a nutshell, RNTuple is a functional storage backend in Athena
○ All official data products we support in TTree are also supported in RNTuple at this point

■ Not all workflows are fully supported yet, e.g., AthenaMP + SharedWriter w/ parallel compression (more later)
■ We’re currently looking into optimizing various aspects of our RNTuple data already!

○ Still, ATLAS has plenty of work to do before deploying RNTuple in production
■ Certain aspects go above and beyond the core framework support, e.g., analysis etc.

API Review: General Remarks
● ATLAS thanks CCE for facilitating this review and the ROOT team’s collaboration
○ Most, if not all, core ATLAS requirements are addressed before/during the API review

■ E.g., model updating (late attributes), emplacing new values (generating default objects), etc.

● So far, naturally, we’ve mostly concentrated on the functionality
○ That’s not to say we haven’t looked at a number of optimization aspects

■ Split vs non-split encoding of fields etc. (already discussed in previous meetings, e.g., see here)

● Over the course of the API review, we made a number of improvements
○ Using the proper API, e.g., RNTupleReader → RPageSource → RNTupleReader
○ Adopting API changes that result from the review, as well as internal developments

● TL;DR Current RNTuple API provides sufficient functionality for ATLAS
● Having said all these, ATLAS still has significant work ahead
○ Optimizing RNTuple usage in various different modes and for data different formats

■ Serial, multi-process (MP), multi-thread (MT), and even hybrid (MT/MP) Athena jobs
■ HITS, RDOs, ESDs, AODs, and DAODs all have different characteristics

○ Elephant in the room: Adoption in physics analysis (beyond our scope here)

3

https://indico.fnal.gov/event/66581/contributions/301692/attachments/182527/250644/20241016-METE-RNTuple_ATLAS_HEPCCE.pdf

Open Items on the API and Functionality
● There are a still few to-be-addressed functional points:
○ These were all previously discussed and agreed to be addressed in the next version
○ On-the-fly fast merging of RNTuples:

■ Current merging works in an hadd scenario (merging existing/finalized files)
◻ A few shortcomings there too, e.g., no way to pass RNTupleMergeOptions through TFileMerger (e.g., select union)

■ However, it is missing incremental merging of open/in-memory RNTuples
◻ This is used in AthenaMP + SharedWriter (w/ parallel compression) derivation production jobs producing TTrees

◻ N clients produce their own TTrees and a server merges client data (via TFileMerger) and resets the objects
✩ A functionality akin to parallelMergeServer+parallelMergeClient setup (via networking)

○ Custom indexing (a la TTree::BuildIndex("...")):
■ auto view = reader->GetView<...>("foo");

■ auto result = view(idx); where idx is a custom field value instead of [0…N]

○ Friend RNTuples (a la friend TTrees)
■ This is a functionality we’ve been investigating for Run 4, see Custom Event Sample Augmentation

4

https://root.cern/doc/master/parallelMergeServer_8C.html
https://root.cern/doc/master/parallelMergeClient_8C.html
https://indico.jlab.org/event/459/contributions/11422/

Open Items on the API and Functionality (cont’d)

● There are also other less critical points:
○ We internally cache RNTupleView objects for performance
■ Currently no way to create an empty view, we need to use dynamic allocation

◻ viewMap[fieldID] = std::make_unique<RNTupleView<void>>(reader->GetView<void>(fieldName, nullptr));

◻ Perhaps this can be improved on both ROOT and Athena sides

○ Streamlined/simplified API with more configurability:
■ Configure split/unsplit encoding in an easier way (now requires looping over all subfields by hand)

◻ for (auto& subfield : *field) {

◻ if(subfield.GetTypeName() == "float") {

◻ subfield.SetColumnRepresentatives({{ROOT::Experimental::EColumnType::kReal32}});

◻ }

◻ else if(subfield.GetTypeName() == "std::int32_t") {

◻ subfield.SetColumnRepresentatives({{ROOT::Experimental::EColumnType::kInt32}});

◻ } // Check/set each type’s column representatives by hand

◻ }

■ Page size configuration per (sub)field (this can be done globally)
5

Conclusions and Outlook
● Current RNTuple API provides sufficient functionality for ATLAS
○ Here, we cover the framework-level requirements, not analysis use-cases
○ However, there are still desired missing functionality (see previous slide for examples)

● Ongoing effort in measuring the performance/ performing optimizations
○ Athena has many execution modes: serial, MT, MP, and MT/MP, with different signatures
○ Moreover, different formats have different characteristics, e.g., ESD vs DAOD etc.

● Next steps for ATLAS involve:
○ Addressing the missing functionality, especially for derivation production (fast merge)
○ Profiling the performance in all aspects and optimizing the workflows
■ E.g., reproduce all DAOD PHYSLITE OpenData in RNTuple v1.0 for 1-to-1 comparisons w/ TTree

○ Move the existing prototype in the framework to a production-ready state
○ Help with the RNTuple adoption on the analysis side

● ATLAS looks forward to continued collaboration with the CCE/ROOT teams!
6

