

LBNF Hadron Absorber Final Design Review – Risks and Quality Assurance

Jonathan Williams

LBNF Hadron Absorber

18 December 2024

Office of Science

Relevant Documents

• <u>DUNE-doc-32426</u>

- Engineering Risk Assessment
- Risk Prevention Through Design Assessment
- DUNE-doc-30781: Installation documentation
 - Weld plans and analyses
 - Stability calcs
 - Installation plan
- <u>DUNE-doc-32085</u>
 - Quality Assurance and Control Plan

Risk Prevention Through Design

- <u>DUNE-doc-32426</u>
- Outstanding risks not mitigated through design choices require alternative mitigation
- Example of a remaining risk with mitigations:
 - Measure all parts and integrate into assembly model and choose ideal parts to mitigate risk of loose-tolerances causing interference
 - Can set methodology for mitigation, but this does not physically stop parts like Blue Blocks from being procured under/over the "ideal" size
 - In case of Blue Blocks, can select better blocks for use in important stacks

Risk Prevention Through Design

- Several risks have "catastrophic" consequences if realized (ex. >1 death possible), which is an automatic "moderate" hazard that requires mitigation/signoff at minimum.
- Example of a mitigated risk: 9.11" steel fails structurally during install
 - Lift/load proof tests of 9.11 steel prove that the threads can take required load, and weld tests on acceptance prove it can be welded reliably
 - The consequence of one failing during a lift is not addressed by that
 - Crane safety practices (standing clear of loads) reduces likelihood of injury *and* the severity of the hazard itself (keeping multiple people away from the load means fewer possible injuries)
 - Keeping parts on the crane while stability welds are made highly reduces the likelihood of parts tipping
 - Collectively, the likelihood of incidents is reduced on several fronts, as is severity.
- · Final residual risk assessed as "Minor"
 - This does not mean the situation is now trivial procedures need to be followed

Engineering Risks for Absorber

- Execution Risks
 - Tolerance Stack-up
 - Fabrication
 - ES&H
- Operational
 - Radiological/ES&H
 - Component failure
 - Machine protection

Execution Risks

- Personnel risks
 - Hazards associated with moving heavy parts and stability of the stack
 - Environmental hazards weld smoke, egress from spaces, fall risk due to heights
- Blue Block installation
 - Steel is mildly radioactive
- Tolerance risks
 - Oversize/undersize parts, variable Blue blocks

Critical Bunker/Module Chase Dimensions

7 12.18.2024

Execution Risk Mitigations

- Stability Analyses (see <u>DUNE-doc-30781</u>)
- Weld Plan/Install Plan that follow a "staircase" install pattern to minimize exposed high ledges
 - See installation plan (same doc)
 - Worker training and experienced personnel (contract ironworkers)
- Avoid chipping Blue Block paint or welding, wear dosimetry
- Ventilation through Bunker
- Add life safety tieoff points as needed during assembly
 - Drop-in concrete anchors can be placed in bunker walls

Execution Risk Mitigations

- Ventilation through Bunker
- Add life safety tieoff points as needed during assembly
 - Drop-in concrete anchors can be placed in bunker walls
- Tolerancing
 - Cataloging and QC dimensional inspections, plus assembly model, to make sure all parts will fit
 - Flexibility in design for over/undersize parts
 - Filler pieces, leveling shims, grout underlay, leveling screws
 - Insert shims to lock in module positions after install

Drop-in Anchors for Fall Protection – Wilson Hall Tunnel Hatch

10 12.18.2024

Operational Risks – Radiological/ES&H

- Prompt and residual doses
 - Radiation Safety interlock system to prevent exposure to beam-on radiation
 - Maintenance scenarios detailed residual dose models inform access locations and temporary shielding positions
- · Remote handling operations capability to minimize worker dose
 - Will be addressed during operations if needed, with specific procedures and new equipment (not Project scope)
 - For now, provisions made to accommodate remote handling (pick points, morgue space, etc.)
- Access controls to top of Bunker near ledge
 - Temporary barriers

Operational Risks - Component Failure

- Core Block Weld Failure
 - Welds on water lines are critical to functioning of the Absorber failure delays experiment
 - Resulting water spill could damage Absorber
 - Aluminum can be difficult to weld with repeatable high quality
 - NuMI and LBNF horns reliably make inner conductor welds to NAS Class I specification
- Mitigation: test and practice welds
 - Previous testing (see <u>DUNE-doc-32354</u>) made test welds on representative core block plugs
 - 5 of 6 reached NAS Class 1
 - New tests planned (see next slide)
 - RAW Pan to catch and divert major leaks to spill tanks

Aluminum Weld Tests

- Follow-on testing planned: core block to elbow joint, elbow to pipe joints, and flange joint
 - Ongoing prep work. Welding may be complete by time of FDR
 - Additional pipe-to-pipe weld tests for more info on process
 - X-ray and destructive inspections planned to verify weld quality
 - Match results to penetrant and visual in-process examinations

13 12.18.2024

J. Williams I LBNF Hadron Absorber Final Design Review - Risks and Quality Assurance

LBNF/DUNE

Aluminum Weld Test Updates

14 12.18.2024

Operational Risk – Water Leak Containment

- RAW Pan
 - Stainless steel sheets welded into leak-tight bathtub
 - Drains to spill tanks on lower level of Absorber Hall (Sump Room)

Operational Risks - Machine Protection

- Risk of damaging absorber with accident pulses
 - Analyze accident cases to determine survivability of accident pulses
 - Limit accident pulses to 2 with detection and permit system
- Due to severity of consequence of many accident pulses (damage to Absorber), have 3 independent systems that can withdraw permit
 - Thermocouple (TC) array embedded in Core
 - Monitors absolute temperature and pulse-to-pulse variation by monitoring temperature
 - MuMS muon counts (not Absorber scope, but feeds to same Abort Concentrator)
 - Upstream pre-target BPMs (also not in Absorber scope)
- TC bars are replaceable without removing core module
 - Can operate with some failed TCs beam shower is wide
 - NuMI Absorber TC's operating since 2005 without failures

Thermocouple Beam Test

- Have requested beam time for a thermocouple test
 - Linac beam (400 MeV protons) to the ITA test area in the MTA beamline
 - Tune pulses to deposit comparable energy in thermocouples compared to Absorber
 - · Similar temperature rise
- Test full readout and processing chain for thermocouples to test response time of integrated system
 - Multiple readout schemes under consideration
 - Industrial control modules (slower, cheaper)
 - Thermocouple readout cards for PLC (faster, expensive)
 - Test PLC checking a single channel to estimate performance with all channels

Quality Assurance and Control

19 12.18.2024

J. Wi

QA/QC Plan

- <u>DUNE-doc-32085</u>
- Cover procurement/acceptance, fabrication, and installation of the Absorber and its components
- Details:
 - Core block weldments fabrication (and testing), core module fabrication, water pipe weldment fabrication
 - Absorber Bunker dimensions, steel support weldment alignment, RAW Pan leak-tightness, core module installation, and steel shielding base layer leveling
 - As-received part inspections on 9.11" steel, other components, and integration into Assembly Model for tolerancing control
 - General in-process installation inspections to verify assembly is proceeding according to print
- This is not a final plan
 - Project QA has been involved in development to date

Inspections

- Dimensional inspections of parts before install
 - Integrate into Assembly Model CAD and analytical tolerance model
 - · Parts are received before assembly begins, leave time to catalog
 - Verify that parts will fit into the Bunker in major X-Y-Z dimensions
- Parts at limits of tolerances (Blue Blocks and 9.11" steel) could result in interferences
 - This will allow modification ahead of assembly to avoid interferences entirely (ex., move a Blue block elsewhere, or flame-cut a slab in half to cut down camber)
- Leak tests of RAW Pan, core modules, and piping
 - Visual, penetrant, fluid, helium depending on parts in question
- In-process dimensional inspections
 - Measure against assembly prints (yet to be drawn) for each step
 - Alignment will make initial survey of Bunker (also feeds into Assembly Model)

Risks and QA/QC: Questions?

22 12.18.2024

J. Wi

Backup

23 12.18.2024

Programmatic Risks – Procurement & Contracting

- Vendor performance is highly variable
 - Cost
 - Schedule
 - Highly likely there will be issues
- Long-lead parts are planned to be procured earlier in the purchasing process to allow time for delays – otherwise, likely to inflict needless project delays
- E.g., assembly fixtures for core modules are relatively simple weldments required for install
 - Recent experience with the LBNF horn test stand illustrates issues
 - Delays in delivery, install, and alignment
 - · Cost was higher than expected for a straightforward frame

Thermocouple Core Block

- Example accident scenarios:
 - Baffle or bafflette strikes
 - Less beam reaches absorber
 - Target failure or beam misses the target
 - More beam reaches the Absorber
 - System designed to limit accident pulses to 2, i.e. prevent a third accident pulse
 - Upstream BPMs can detect a mis-steered beam, TCs provide more data about profile and upstream conditions.
 - An abnormal pulse will have a detectable temperature change at the TC array

Collaborations / Partnerships / Members

26 12.18.2024

J. Willia

