



### APA Populated Board Production PRR Kickoff Meeting

Brian Rebel November 26, 2024



Outline



- Scope, Cost and Schedule
- Design Status
- Work planning and control
- Production and Quality Assurance

# **Documentation For Review**

3

#### DEEP UNDERGROUND NEUTRINO EXPERIMENT

Items

Do

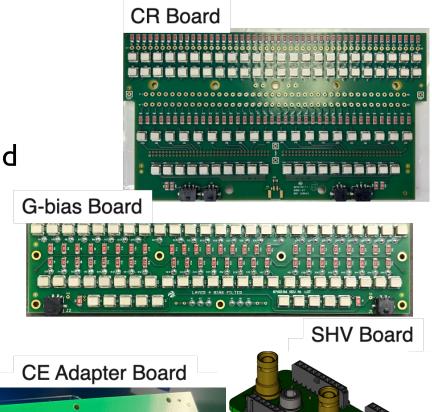


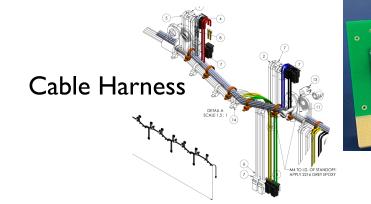
| cumentation<br>Category   | <b>Document Description</b>                 | EDMS Link                                                                                                                                                                                             |
|---------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                             |                                                                                                                                                                                                       |
| 5                         | Subsystem Model                             | https://edms.cern.ch/project/CERN-0000196720                                                                                                                                                          |
| Systems<br>ngineering     | Interface Documents                         | Consortia Interfaces<br>APA Wire to CE Map                                                                                                                                                            |
| ste<br>ne                 | Fabrication Drawings                        | https://edms.cern.ch/project/CERN-0000253396                                                                                                                                                          |
| gii                       | Part Identifiers                            | https://edms.cern.ch/document/2684658/LAST_RELEASED                                                                                                                                                   |
| с<br>В                    | Database Entry                              | APA QA Database                                                                                                                                                                                       |
| _                         | Installation Plan                           | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
|                           |                                             |                                                                                                                                                                                                       |
| ring                      | Grounding and Shielding Plan                | https://edms.cern.ch/document/2617017/LAST_RELEASED                                                                                                                                                   |
| gineer                    | Wiring Diagrams                             | https://edms.cern.ch/project/CERN-0000253396                                                                                                                                                          |
| Electrical Engineering    | Detailed Cable Drawings                     | Cable Harness Drawings (8765023, 8765024)<br>SHV Assembly Drawing (8760959)                                                                                                                           |
| <u>;;</u>                 | PCB Documentation                           | https://edms.cern.ch/project/CERN-0000253396                                                                                                                                                          |
| lecti                     | ESD Procedures                              | See Production Procedures for Each Assembly Type<br>See Installation Procedures for Each Assembly Type                                                                                                |
| ш                         |                                             |                                                                                                                                                                                                       |
|                           | Electrical and Mechanical Safety<br>Reviews | https://edms.cern.ch/document/3070147/LAST_RELEASED                                                                                                                                                   |
| 0                         | Applicable Engineering Codes and Standards  | https://edms.cern.ch/document/3070147/LAST_RELEASED                                                                                                                                                   |
| Compliance<br>Office      | Compliance Office Approvals                 | ESDA                                                                                                                                                                                                  |
| iji di Li                 | Procurement Plan                            | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
| ĒÖ                        | Vendor QC Documentation Plans               | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
| ပိ                        | Handling of Critical Components             | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
|                           | ECR/ECN Process                             | Engineering Change Request<br>Engineering Change Notification                                                                                                                                         |
|                           | Worker Training Requirements                | https://edms.cern.ch/project/CERN-0000230863                                                                                                                                                          |
|                           |                                             |                                                                                                                                                                                                       |
|                           | Production Schedule                         | Production Status Google Sheet - Populated Boards Tab                                                                                                                                                 |
|                           | Shipping Plan and Schedule                  | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
|                           | Shipping Flan and Genedule                  | Board production equipment includes:                                                                                                                                                                  |
| Technical<br>Coordination | Resources                                   | Keyance Metrology<br>Pick and Place Machines<br>Vapor Phase Reflow<br>Selective Solder Machine<br>Custom Automated Test Stands for CR,G-bias and CE<br>Adapter boards<br>Mill-Max pin insertion robot |
|                           | Production Risks and Mitigations            | https://edms.cern.ch/document/3086484/LAST_RELEASED                                                                                                                                                   |
|                           | Sign-offs for transfer of Produced          |                                                                                                                                                                                                       |
|                           |                                             |                                                                                                                                                                                                       |

https://edms.cern.ch/document/3086484/LAST\_RELEASE

- The PRR documents are accessible from <u>EDMS</u>
- Links are organized according to category
- Some EDMS entries contain multiple documents; when that happens links are duplicated in the sheet

| c)                  |                                         |                                                                                  |  |  |  |  |
|---------------------|-----------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|
|                     | Responses to Previous Reviews           | https://edms.cern.ch/document/2604165/LAST_RELEASED                              |  |  |  |  |
| Ë                   | Final Testing and Performance           |                                                                                  |  |  |  |  |
| 2                   | Results of Pre-Production Work          | https://edms.cern.ch/document/3086484/LAST_RELEASED                              |  |  |  |  |
| Review Office       | Design Changes since EDD                | Use of hexagonal Mill-Max inserts and included                                   |  |  |  |  |
| Se C                | Design Changes since FDR                | specification of copper plating for Mill-Max holes in<br>geometry and CR boards. |  |  |  |  |
| œ                   |                                         |                                                                                  |  |  |  |  |
| -                   |                                         |                                                                                  |  |  |  |  |
| 笭                   | Facility Safety Plans                   | https://edms.cern.ch/document/3070147/LAST_RELEASED                              |  |  |  |  |
| ES&H                | Hazard Analysis for Production          | https://edms.cern.ch/document/3070147/LAST_RELEASED                              |  |  |  |  |
|                     |                                         |                                                                                  |  |  |  |  |
|                     |                                         |                                                                                  |  |  |  |  |
|                     | Manufacturing and Testing<br>Procedures | https://edms.cern.ch/project/CERN-0000230863                                     |  |  |  |  |
|                     | Shipping, Handling and Storage          |                                                                                  |  |  |  |  |
|                     | Specifications                          | https://edms.cern.ch/document/3086484/LAST_RELEASED                              |  |  |  |  |
| <u> </u>            | QA/QC Plan                              | https://edms.cern.ch/document/3070145/LAST_RELEASED                              |  |  |  |  |
| la l                | Traveler Documents                      | Auto-generated by APA QA database web-application                                |  |  |  |  |
| Quality<br>Assuranc | Non-conformance Documents               | Stored in APA QA database                                                        |  |  |  |  |
| - As                | DB Plans                                | APA QA Database                                                                  |  |  |  |  |
|                     | Assigned Sign-offs                      | https://edms.cern.ch/document/3086484/LAST_RELEASED                              |  |  |  |  |
|                     | Installation and Testing                |                                                                                  |  |  |  |  |
|                     | Procedures                              | https://edms.cern.ch/project/CERN-0000253415                                     |  |  |  |  |
|                     |                                         |                                                                                  |  |  |  |  |




 CR boards - connected to signals from X,V,U layers

Scope

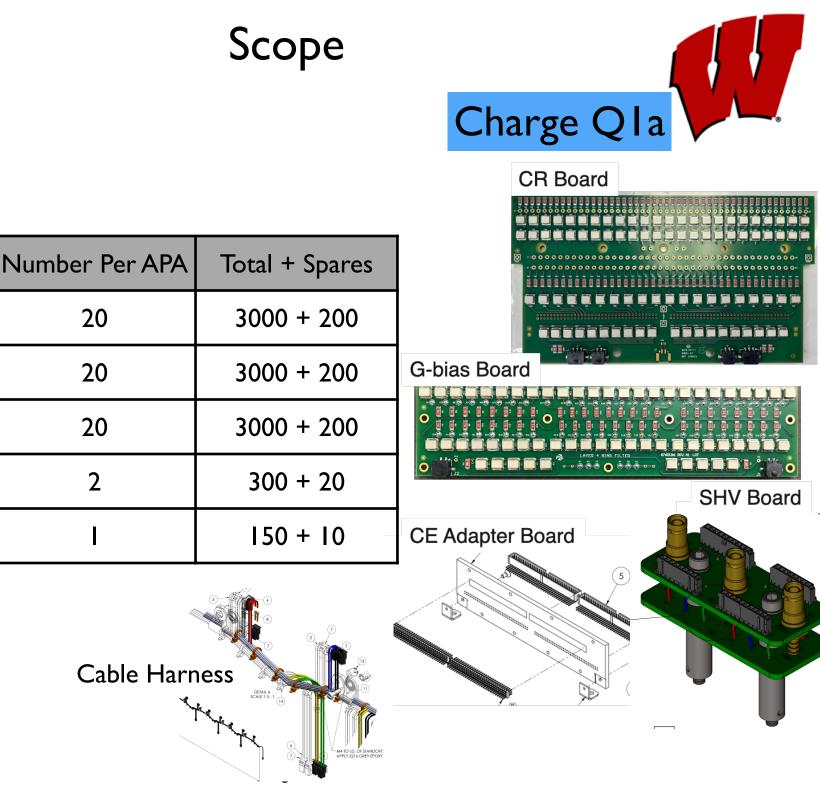
- G-bias boards connected to G layer
- CE adapter board interface between APA and cold electronics
- Bias voltage distribution harnesses
- SHV board distributes bias voltage to wire layers through cable harness







Assembly


CR

**G**-bias

**CE** Adapter

Harness

SHV







| Assembly   | PCBs                        | Electrical<br>Components | Mechanical<br>Components | Labor | Total Per<br>APA |
|------------|-----------------------------|--------------------------|--------------------------|-------|------------------|
| CR         | 1.34                        | 0.48                     | 0.23                     | 9.64  | 11.69            |
| G-bias     | 0.16                        | 0.15                     | I.78                     | 3.30  | 5.39             |
| CE Adapter | <b>CE Adapter</b> 0.16 0.39 |                          | 0.18                     | 3.30  | 4.03             |
| Harness    | Harness NA 0.49             |                          | 0.71                     | 2.86  | 4.06             |
| SHV        | 0.01                        | 0.10                     | 0.0                      | 0.62  | 0.73             |
| Capacitors | NA 4.59                     |                          | NA                       | NA    | 4.59             |
| Total      | I.67                        | 6.20                     | 2.90                     | 19.72 | 30.49            |

Costs

• Table shows costs in \$k per APA

- Costs include assumption of 90% yield for components and an additional 10% inefficiency factor for labor
- Total cost including spares is \$4,878k

## Schedule





| Assembly   | Production<br>Cadence | 50% Complete<br>Date                       | 100% Complete<br>Date | Installation<br>Duration        |  |
|------------|-----------------------|--------------------------------------------|-----------------------|---------------------------------|--|
| CR         | 4 APAs/month          | August 2026April 2028August 2026April 2028 |                       |                                 |  |
| G-bias     | 4 APAs/month          |                                            |                       | April 2028 -                    |  |
| Harness    | 8 APAs/month          | October 2025                               | August 2026           | February 2029                   |  |
| SHV        | 16 APAs/month         | s/month April 2025 Oc                      |                       |                                 |  |
| CE Adapter | 8 APAs/month          | October 2025                               | August 2026           | August 2025 -<br>September 2027 |  |

- The above table assumes a start date of I December 2024
- CE adapter boards delivered to CE Consortium 50% needed by Sep. 2026
- SHV production will likely start later, but we have plenty of time
- All assemblies completed well before their need-by date



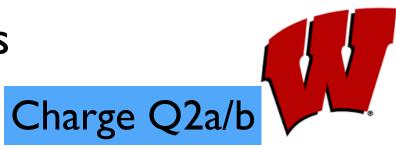




- The CD3a/b scope provides funding for procurement of all PCBs and components needed: <u>Procurement Plan is on EDMS</u>
- Procuring all boards and components in batches to match the shelf-lives of the items: biggest risks are oxidation of copper pads and aging of presoldered surface mount components
  - Boards typically take 20 days from date of order, ordering in batches of approximately 1000 boards
  - Components depend on available stock, but typically 6 weeks or less for quantities required to assemble 1000 boards
  - Capacitors are long-lead time; first half of total needed ordered to be delivered in 4 equal batches, will do the same for the second half
- We have a Wisconsin Governor's Waiver that allows us to streamline procurement

#### Pre-Production QA






| Board Type                                | Quantity Assembled | Quantity<br>Passed (%Yield) |
|-------------------------------------------|--------------------|-----------------------------|
| CE Adapter                                | 44                 | 44 (100%)                   |
| CR                                        | 40                 | 40 (100%)                   |
| G-bias                                    | 44                 | 43 (97.7%)                  |
| SHV                                       | 4                  | 4 (100%)                    |
| Bias Voltage Distribution Harness<br>Sets | 2                  | 2 (100%)                    |

- QA results of pre-production assembly are in <u>EDMS</u>
- Our goal is for 90% yield of assemblies to be ready for use at SURF
- We are over-achieving the goal with at least 97% yield so far
- The yield of PCBs passing the Keyence metrology checks is similarly high currently above 95%
- No assemblies will be sent to SURF unless they pass all acceptance tests



#### Design Status



- APA requirements are in EDMS
- Board specifications and drawings are in <u>EDMS</u>, folder structure is shown at right
- Current versions of the boards were deployed in ProtoDUNE II
- Folders relevant for this review are labeled "Populated"
- PCB Vendor Specs" are files sent to PCB manufacturers
- PCB Assembled boards" are the mechanical assembly drawings for all boards
- Design changes since the FDR (August 2021) are:
  - Switch to hexagonal profile Mill-Max pins
  - Specified plating amount for Mill-Max pin holes
  - Changed to using 2 and 3 pin Molex connectors for G-bias and CR boards and cable harnesses to ensure proper cable attachments

#### 2114972 (v.1) X head boards

Printed Circuit Boards
Components
PCB - Vendor Specs
Populated PCBs

#### PCB - Assembled boards

Geometry Boards

- a 📁 Populated PCBs
  - 2114924 (v.4) SHV Header Board

2114962 (v.3) SHV Header Board

2114964 (v.3) G-Plane Bias Filter Board 2222039 (v.4) CE-CR Adapter Board

2114963 (v.5) CR Board

2114965 (v.1) G head boards

2114967 (v.1) U head boards 2114969 (v.1) V head boards

- 2114924 (v.5) SHV Header Board
- 2114926 (v.3) CR Board
- 2114926 (v.4) CR Board
- 2114929 (v.3) G-Plane Bias Filter Board
- 2114929 (v.4) G-Plane Bias Filter Board
- 2617510 (v.3) CE-CR Adapter Boards
- 2617510 (v.4) CE-CR Adapter Boards
- Geometry Boards
- Populated Board Production Procedures and Documents
  - Image: Board Manufacturer QC Documentation
  - CR Board Procedures
  - G-Bias Board Procedures
  - CE Adapter Board Procedures
  - Image: SHV Board Procedures
  - Cable Harness Procedures
  - Intake and Equipment
    - 3070145 (v.1) Populated Board QA-QC Plan
  - 3070147 (v.1) ES&H Related Documents
    - 3086484 (v.1) Production Planning Documents
- 2624028 (v.1) Labconco labwear washer model 402001010 us
- 2617017 (v.4) Grounding and Shielding Plan



#### Interfaces



- Interface documents are accessible from the <u>APA</u> <u>EDMS area</u>
- The only interfaces for this scope of this PRR are with the TPC consortium
- The CE adapter boards create the link between the CR boards and the FEMBs
- We developed the <u>channel mapping</u> with the CE group to go from APA wire segment to CE channel
- The SHV assemblies accept the bias voltage cables from the TPC consortium
- In both cases, the components on the APA assemblies were chosen in collaboration with the other consortium
- The other boards and harnesses connect to the APA frame or head board stack

| 🤣 Interface Documents                                            |
|------------------------------------------------------------------|
| a 🥼 SP APA consortium                                            |
| 2088735 (v.5) FD1-HD APA and JT PDS Consortia Interface Document |
| 2088736 (v.6) SP APA and SP TPC Consortia Interface Document     |
| 2088736 (v.7) SP APA and SP TPC Consortia Interface Document     |
| 2088738 (v.5) FD1 APA and JT-HV Consortia Interface Document     |
| 2088738 (v.6) FD1 APA and JT-HV Consortia Interface Document     |
| 2145158 (v.3) FD1 APA to DAQ Consortium Interface Document       |
| 2145145 (v.4) JT COM and SP APA Consortium Interface Document    |
| 2145136 (v.6) JT CI and SP APA Consortia Interface Document      |
| 2459135 (v.3) ICD FD1 HD Consortia APA Specific Appendix         |
| 2233449 (v.11) SP Detector#1 Installation Plan                   |
| 2452646 (v.5) Consortia Installation Interface Drawings          |
| 2684658 (v.5) APA PBS Identifier                                 |



### **Previous Recommendations**



Charge Q2c

| <b>Review Type</b> | Review Title | Rec. No. | Recommendation Text                                                                                                                                                        | Owner(s)        | Owner Email | Response by Owner                                   | Scheduled Cl | Actual Close | Status (Owner) | Status (RO) | Status (DPD o |
|--------------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------------------------------------|--------------|--------------|----------------|-------------|---------------|
| FDR                | FD1 APA FDR  | 1        | The APA team should ensure that<br>updated schematics and associated<br>BOMs are present in EDMS to<br>accurately reflect the connectors<br>used on the production boards. | I<br>JE, BR, CT |             | All PCB drawing packages have been updated in EDMS. | 2/4/22       | 2/4/22       | Completed      | Complete    | Closed        |

- Recommendations from the FDR are on <u>EDMS</u>
- Only one was relevant to the scope of this PRR (see above)
- The recommendation was completed and closed in February 2022

# DEEP UNDERGROUND NEUTRINO EXPERIMENT

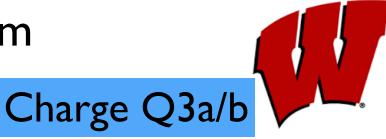
Interpretended in the second secon

- Image: A state of the state
  - Ø Parts
  - Pre-production Procedures
  - Production Procedures
  - Post-production Procedures
  - Iravelers
  - 🕨 📁 Shipping
  - a 🥼 Procedural Change Records
  - a 🧔 Procedure Change Request

2709827 (v.4) Procedure Change Request Template 2720352 (v.1) Updates to APA Install to Reflect DUNE Winder S 2723202 (v.1) Change Document Number for Head Board Asser 2747093 (v.1) Update tape-solder-trim procedure to better captu 2748850 (v.2) Minor miscellaneaous edits to 5 procedures 2749546 (v.1) Addition of PID on assembled frame 2801970 (v.1) PCR 00006 Update to comb installation procedure 2801972 (v.1) PCR 0007 Update of board installation procedure 2842009 (v.1) PCR 0008 Request to drop wrap board shoulder j 2874051 (v.1) PCR 0009 Update of comb installation procedure 2874052 (v.1) PCR 0010 Double step verification of major produ 2874053 (v.1) PCR 0011 Update of board installation procedure: 2874081 (v.1) PCR 0012 Update of all board assembly and insp 2881026 (v.1) PCR 0013 Geometry Board Tolerances And Metro 2890536 (v.1) PCR 0014 Update tooth strip assembly and inspe 2893833 (v.1) PCR 0015 Update board labelling procedure UK 2896583 (v.1) PCR 0016 Update wire comb installation procedu 2898080 (v.1) PCR 0017 Second Geometry Board Tolerances A 2902558 (v.1) PCR 0018 Change M4 Screw Length For Mesh P 2926760 (v.2) Procedure Change Request Instructions 2932458 (v.1) PCR 0019 Update Mesh bracket and frame tempe 2932460 (v.1) PCR 0020 Update PD rail preparation and installa 2942674 (v.1) PCR 0021 Modify cover board installation procedu 2942714 (v.1) PCR 0022 Add warning in PD rail preparation and Image: A state of the state 2709831 (v.1) Procedure Change Notification Template

2723200 (v.2) Updates to APA Install to Reflect DUNE Winder S

2747082 (v.1) Change Document Number for Head Board Asser
2747095 (v.1) Update tape-solder-trim procedure to better captu


Change Control



- The APA consortium has a process released on <u>EDMS</u> for approving both engineering and procedure change requests
- Change requests are posted and circulated to the relevant people for review through EDMS
- Once approved, updated procedures or drawings are approved and released
- Finally a change notification is processed through EDMS to ensure all relevant folks are informed



#### **Production Team**



- Pam Marr-Laundrie is leading the effort and it <u>couldn't be in better hands</u>
- Xu Zhai can provide some engineering support as needed
- Andy Arbuckle is the lead electrical tech years of experience building components for DUNE and IceCube; will run the component assembly equipment
- Mary Severson, Christine Verdico, Phil Johnson and Soeun Ouk are other techs from PSL performing QA checks, washing boards and assembling harnesses
- Looking to supplement the core team by bringing under-utilized techs from other UW departments to PSL
- We have also identified a couple of undergrads, Krishna Lakkaraju and Maya Lee, to help with Keyence checks, laser marking of boards and running test stands
- P6 includes 0.45 FTE engineer and 4.55 FTE technician labor per year for this work

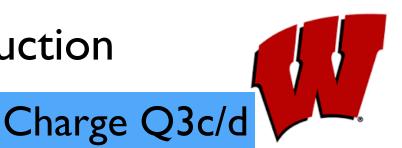


# Setting up for Production





- Production will take place at UW PSL
- The production area has been set up over several months with a lot of equipment: pick and place machines, vapor phase reflow, board metrology, selective solder machine, pin insertion robot






- Selective solder machine is my favorite
- Used for the connectors on the CR and CE adapter boards
- Provides a very uniform solder connection in a fraction of the time it took to make the ProtoDUNE I and II boards
- Several board washers for the different processes
- Automated test stands for CR and G-bias boards are ready for use



# Setting up for Production



- Procedures and work instructions are released in <u>EDMS</u>
- Procedures for incoming inspection, assembly and testing of all assemblies are grouped by assembly type
- We also have procedures for material intake and equipment maintenance
- Pam engaged with UW ES&H to ensure safe working conditions during the assembly, documents are posted to <u>EDMS</u>
- The Electrical Safety Design Analysis was approved by the CO (Terri Shaw) and is also posted to <u>EDMS</u>

#### 🔺 嬑 SP APA consortium

- Image: Image: block b
- Image: Part Drawings
- Production Documents
- 📁 📁 Grounding Diagram
- 🕨 📁 Wiring Diagrams
- a 🧔 Printed Circuit Boards
  - Components
  - 🕨 📁 PCB Vendor Specs
  - PCB Assembled boards
  - Populated Board Production Procedures and Documents
    - Image: Board Manufacturer QC Documentation
    - CR Board Procedures
    - G-Bias Board Procedures
    - CE Adapter Board Procedures
    - Image: SHV Board Procedures
    - Cable Harness Procedures
    - Intake and Equipment
      - 3070145 (v.1) Populated Board QA-QC Plan
    - 3070147 (v.1) ES&H Related Documents
      - 3086484 (v.1) Production Planning Documents



#### **Risks and Mitigations**



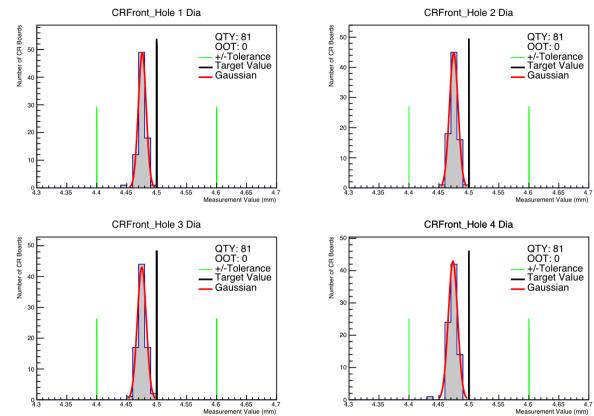
- Two primary risks for this production
  - Availability of capacitors still to procure 289,168 of them
  - Availability of labor at UW PSL
  - See <u>EDMS</u> for more details
- Capacitor mitigation is to order the full amount from a supplier and have the capacitors delivered in several smaller batches over the course of several months
- Currently have enough capacitors on-hand for half the production
- We have identified a team of 5 PSL techs available for this production supplemented with undergraduates
- We are also working on a deal with other campus departments to bring in skilled electrical techs as needed when those departments have capacity to do so



## **Incoming Inspection**

- Procedures for intake of PCBs and inspection are released in <u>EDMS</u>
- The process varies slightly from one board type to another; specific procedures are listed in subfolders for each board type
- There is no incoming inspection of bulk components such as resisters, capacitors, connectors, etc. as those components are assumed to have high yield from the manufacturer
- For both PCBs and components we have ordered sufficient quantities to allow up to 10% to fail
- If we have higher yields we will order fewer materials in the last batches




- 🛛 🧔 SP APA consortium
  - Image: Image: block b
  - Image: Part Drawings
  - I Production Documents
  - 🕨 📁 Grounding Diagram
  - 🕨 📁 Wiring Diagrams
  - a 🧔 Printed Circuit Boards
    - Components
    - PCB Vendor Specs
    - PCB Assembled boards
    - I populated Board Production Procedures and Documents
      - Image: Board Manufacturer QC Documentation
      - CR Board Procedures
      - G-Bias Board Procedures
      - CE Adapter Board Procedures
      - Image: Image: Image: block block
      - Cable Harness Procedures
      - Intake and Equipment
        - 3070145 (v.1) Populated Board QA-QC Plan
      - 3070147 (v.1) ES&H Related Documents
      - 3086484 (v.1) Production Planning Documents



## **Incoming Inspection**

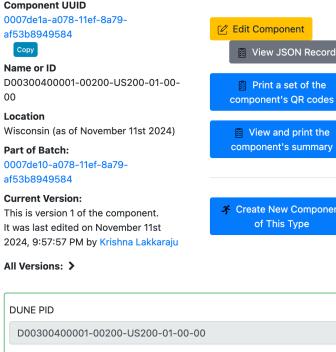


- We create distributions of all feature positions and compare them to the target values and tolerances
- The number of out-of-tolerance (OOT) boards are recorded and any OOT board is identified with the offending measurement(s)
- Metrology data are stored locally, but not deemed necessary to go into the database
- All boards are laser marked after metrology checks, even those that fail
- QA materials from vendors are stored on <u>EDMS</u>








#### Charge Q4d/e/f



- The APA consortium developed a database for storing all QA data, including travelers
- Instructions are on EDMS
- The component page for a CR board is shown at right
- The database automatically populates the DUNE PID, local UW ID (marked on board) and a QR code for the board
- PCBs that fail incoming inspection are marked as non-conformant and put aside
- Travelers are auto-generated using the "Component Summary" button,

#### **CR** Board

00





Print a set of the component's QR codes

View and print the component's summary

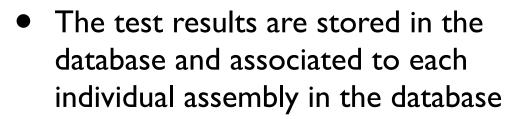
Create New Component

| DUNE PID                                                                      |
|-------------------------------------------------------------------------------|
| D00300400001-00200-US200-01-00-00                                             |
| UW ID                                                                         |
| 200                                                                           |
| Board is Conformant?                                                          |
| Yes                                                                           |
| If the board passes visual inspection and Keyance metrology, it is conformant |



### QA of the Assemblies




- Every assembly has a QA check performed after completion
- G-bias and CR boards are tested for the RC time constant and leakage current in the warm, cold-cycled and then tested again warm
- Developed bespoke test stands for these boards to ensure safe capacitor discharge and reliable operation
- CE adapter boards are checked for continuity and isolation between channels
- Harnesses are tested for continuity
- SHV assemblies will be tested for continuity





QA Data

# Charge Q4d/e/f



- The form for the QA check is shown at right
- The cold cycle tests are recorded only for G-bias and CR boards
- Any assembly that fails QA testing is set aside and will not be shipped to SURF

| Component Type *                           |
|--------------------------------------------|
|                                            |
| Pick what type of component is being QC'ed |
| Pre-Cold Cycle Test                        |
|                                            |
| ⊖ Failed                                   |
| Post-Cold Cycle Test                       |
| ○ Passed                                   |
| ⊖ Failed                                   |
| QA Test Result                             |
| ○ Passed                                   |
| ⊖ Failed                                   |
| Comments                                   |
|                                            |
|                                            |
|                                            |

Any relevant comments, ie replaced capacitor number XX, etc



Storage and Shipping



- The storage and shipping plan is released on <u>EDMS</u>
- After testing is completed the boards are packaged in anti-static bags with desiccant
- CE adapter boards must be sent to the FEMB production sites so they are packaged and sent separately from the other assemblies
- Will package remaining assemblies as kits containing enough assemblies for a single APA and sent to SURF as needed for the installation
- There will be 10 total spare kits; the installation team can open a spare kit to get spare assemblies for multiple APAs
- The kits are recorded in the database and QR codes pointing to those entries will be included with the kits
- The database is able to track the inventory through these kit entries



**Testing at SURF** 



- We anticipate a few tests at SURF
  - CR boards will be checked for leakage current, although it appears doing so is more a test of humidity in the environment than an issue with the boards
  - The combination of the SHV assemblies, G-bias, CR boards and harnesses will be checked for continuity along the full chain
  - Both tests currently require the assemblies to be installed on an APA
  - We may come up with a leakage current test that can be done before installation
- Installation procedures will be posted to <u>EDMS</u>, but are not finalized yet



Summary



• We are ready to start production