PDS and stability studies

ProtoDUNE DRA light

Renan de Aguiar

Summary.

Objective: Analysis of the NP04 runs performed with only PDS data.

- Cosmic Ray Analyses:
 - Stopping Muons
- Light Analyses:
 - Pulse Shape Discrimination
 - Light Rate PDS stability

Cosmic Ray: Stopping muons

Cosmic muons with energy lower than ~1.2 GeV should decay inside NP04*.

Candidates selection:

- Coincident events in different channels (same timestamp);
- The event in each channel should have, at least two peaks in 1024 ticks;
- Different conditions were applied to select the events according with the prominence of the peaks, but the amplitude of the main peak should be always greater than 50 ADCs;
 - <u>Prominence conditions</u>: 50 ADCs and half of the amplitude of the main peak.

Cosmic Ray: Stopping muons

Example of a candidates - run 28586:

Cosmic Ray: Stopping muons

Preliminary Results:

Prominence: 50

Prominence: Half of the main peak

Light Analyses

The scintillation light information is being calculated by convolving the SPE template and the scintillation profile:

However some unknown light source with just the fast component was observed in many runs:

Apparently, there is a correlation between the rate of those signals and the SiPM type.

Light Analyses: Unknown Signals

APA3

APA4

Module	Channels	SIPM	WLS	Rate (Hz)	
1	1, 3, 4, 6	FBK	ELJ	368 ±	46
2	36, 24, 33, 31	HPK	ELJ	144 ±	21
3	0, 2, 5, 7	FBK	G2P	686 ±	100
4	37, 35, 32, 30	HPK	ELJ	146 ±	19
5	41, 43, 44, 46	HPK	G2P	228 ±	45
6	16, <mark>1</mark> 4, 13, 11	FBK	G2P	961 ±	145
7	10, 12, 15, 17	FBK	ELJ	422 ±	46
8	26, 24, 23, 21	FBK	G2P	515 ±	87
9	40, 42, 45, 47	HPK	G2P	99 ±	27
10	27, 25, 22, 20	FBK	G2P	751 ±	113

Module	Channels	SIPM	WLS	Rate (Hz)		
1	0, 2, 5, 7	HPK	G2P	223	±	48
2	6, 4, 3, 1	HPK	G2P	301	±	57
3	10, 12, 15, 17	HPK	ELJ	153	±	13
4	16, 14, 13	HPK	ELJ	181	±	83
5	0, 2, 5, 7	FBK	G2P	-	±	-
6	27, 25, 22, 20	HPK	G2P	-	±	
7	21, 23, 24, 26	HPK	ELJ	397	±	90
8	37, 35, 32, 30	HPK	ELJ	254	±	55
9	31, 33, 34, 36	HPK	G2P	254	±	49
10	47, 45, 42, 40	HPK	G2P	213	±	44

HPK + G2P ~ HPK + ELJ

FBK + G2P>FBK + ELJHPK + G2P~HPK + ELJ

ELJ + FBK	>	ELJ + HPK
G2P + FBK	>	G2P + HPK

FBK produces more unkonwn signals

Light Analyses: Pulse Shape Discrimination

Method:

- Apply the convolution;
- Remove the unknown signals;
- Compute the ratio between the number from photons the fast and the slow components (If / Is).

$$I(t) = I_f(t) + I_s(t) = A \cdot e^{-\frac{t}{\tau_f}} + B \cdot e^{-\frac{t}{\tau_s}}$$

Particle	τ_f (nsec)	τ_s (nsec)	I_f/I_s	Reference
Electrons	6.3 ± 0.2	1020 ± 60	0.083	[62]
	4.6	1540	0.26	[63]
	4.18 ± 0.2	1000 ± 95		[64]
		1110 ± 50		[65]
	6 ± 2	1590 ± 100	0.3	[66]
α	~ 5	1200 ± 100		[62]
	4.4	1100	3.3	[63]
	7.1 ± 1.0	1660 ± 100	1.3	[66]
Fission Fragments	6.8 ± 1.0	1550 ± 100	3	[66]

SEGRETO, E. . Analysis and Simulation of events with scintillation light emission from the ICARUS T600 LAr detector., 2006

Signals on run 28094:

MIP

 $\begin{array}{l} A_s = 33.85000858641664 \ +- \ 3.6072224517636164 \\ A_t = 0.45738547261489015 \ +- \ 0.020006662084654903 \\ tau_s_guess = 6.005913587281838 \ +- \ 3.3062333581248993 \\ tau_t_guess = 1240.765688947452 \ +- \ 79.64702640697277 \\ offset = -0.07245344008418289 \ +- \ 0.14080963997570914 \\ R^2 = 0.9498676921269975 \\ Is/It = 0.3582331076888849 \ +- \ 0.20278531047474027 \\ N\ photons = 770.8084275423367 \ +- \ 122.22056198009781 \\ \end{array}$

ALPHA (?)

A_s = 12.056794321848725 +- 0.9823662610176888 A_t = 0.0549556083354102 +- 0.013286036639796545 tau_s_guess = 14.99999972119975 +- 2.3176600350705576 tau_t_guess = 1000.000000000539 +- 307.0091987260561 offset = 0.4428077117705384 +- 0.07281708972398743 R² = 0.927468916547693 Is/It = 3.2908727602048797 +- 1.4086108692006793

N photons = 235.80752282702696 +- 38.1988978753648

Light Analyses: PDS Stability

- **Objective**: verify the effects of time on the PSD output based on the photon rate of different 1 GeV beam events.
- Methods:
 - Select the fragments of the HDF5 files that have just beam events by looking the TC (trigger candidates);
 - Apply the convolution and remove the unknown signal;
 - Integrate the scintillation profile to estimate the number of photons;
 - Compute the mean photon rate detection.
- For each run, only the 18 initial hdf5 files were selected.
- Challenges:
 - Many changes have been made to the PDS setup: BIAs, firmware modification, trigger...
 - Modifications on the DAQ triggering system: At the end of August, only pions triggered the DAQ system in 1 GeV events, unlike what happened before.

Light Analyses: PDS Stability

- Preliminary results with overestimated errors.

Light Analyses: PDS Stability

- Influence of the beam trigger rate (?):

- Normalizing for 1Hz beam rate:

Next Steps

- The TPC data must now be checked to validate the stopping muon results and make particle selection for the stability analysis.

- The script for the PSD has being upgraded and now runs with different energies will be analysed.