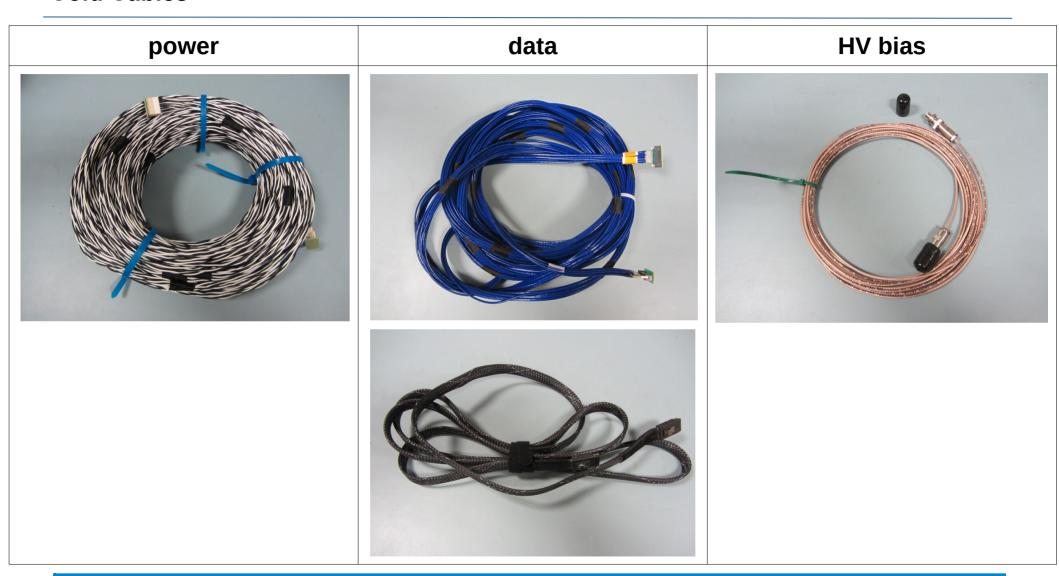




# **Reception and Quality Control**

DUNE PRR: Far Detector TPC and BD Electronics Cold Cables


12/13/2024

Vladimir Tishchenko

#### **Documentation on EDMS**

- CE QC plan: EDMS:2815079.
- Electrical safety note for Cold cables: EDMS:3205268.
- Quality Control of Cold Data cables for FEMBs: EDMS:3207305.


# **Cold Cables**



#### **Power cables**



#### power connector map



# Requirements

| misc.                 | must meet DUNE purity requirements; keep diameter small |           |  |
|-----------------------|---------------------------------------------------------|-----------|--|
| Mechanical strength   | self-support over 12 m; rugged jacket                   |           |  |
| Operating temperature | 70 K                                                    |           |  |
| Max current           | 1.2 A                                                   |           |  |
| Max voltage           | 5 V                                                     |           |  |
| Number of lines       | 4                                                       |           |  |
| Length                | 9m, 22m                                                 | 27m, 2.5m |  |
|                       | FD1-HD                                                  | FD2-VD    |  |

# **Final Design**

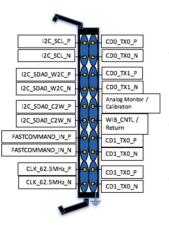
- 8 pairs of AWG 20 silver plated copper wires (see the mapping) (rating: 3 A, 300 V)
- Samtec IPD1-08-D-K locking connectors (rating: 275 VAC, 4.8 A/pin)
- · wire insulation: teflon







#### **Data cables**



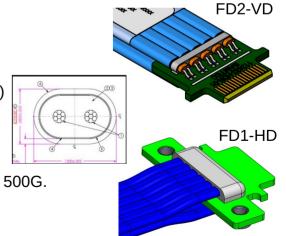

#### Requirements

|                       | FD1-HD                                                       | FD2-VD |  |
|-----------------------|--------------------------------------------------------------|--------|--|
| Length                | 9m, 22m 27m, 2.5m                                            |        |  |
| Number of lines       | 10 LVDS pairs (see the map);                                 |        |  |
| Max voltage / current | 1.8 V                                                        |        |  |
| Max current           | 3 mA                                                         |        |  |
| Operating temperature | 70 K                                                         |        |  |
| Mechanical strength   | self-support over 12 m, rugged jacket                        |        |  |
| misc.                 | must meet DUNE purity test requirements; keep diameter small |        |  |
| Data transmission     | four 1.25 Gbps links                                         |        |  |

#### data connector map

| Signal name                   | Туре         | # of pairs | IO Standard               |
|-------------------------------|--------------|------------|---------------------------|
| Data link                     | Differential | 4          | LVDS                      |
| I2C_SCL                       | Differential | 1          | LVDS                      |
| I2C_SDA0_C2W                  | Differential | 1          | LVDS                      |
| FASTCOMMAND                   | Differential | 1          | LVDS                      |
| LK_62.5MHz Differential       |              | 1          | LVDS                      |
| Analog<br>monitor/calibration | Single Ended | 1/2        | Analog 1.8 V              |
| WIB_CNTL_GND Single Ended     |              | 1/2        | Analog 1.8 V or<br>Return |




## **Final Design**

10 pairs of AWG 26 twinax cables a (rating: 3.4 A, 575 V). (driven by mechanical strength requirements)

Samtec PCB-type connectors

• insulation: Dyneon fluorothermoplastics THV 500G.

patch cable: see next slide

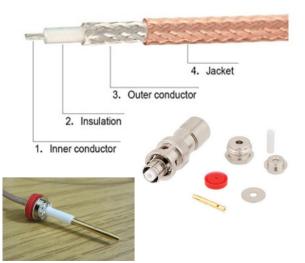



#### Data patch cable



# **Final Design**

COTS 2.5-m-long miniSAS cable. Customization: mesh sleeve jacketing (for improved mechanical protection and maintain proper isolation following DUNE grounding and shielding rules).



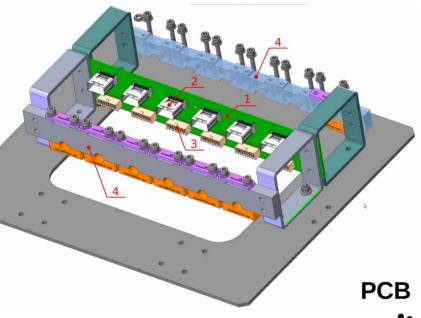



#### **HV** bias cable



**RG316** 




#### Requirements

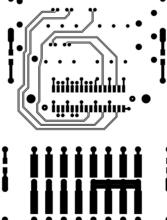
|                       | FD1-HD                                                       | FD2-VD |  |
|-----------------------|--------------------------------------------------------------|--------|--|
| Length                | 9m, 22m                                                      | 27m    |  |
| Number of lines       | 1                                                            |        |  |
| Max voltage           | 1.5 (may increase to 2) kV <b>DC</b> in pure Ar gas          |        |  |
| Max current           | 4 mA DC                                                      |        |  |
| Operating temperature | 70 K                                                         |        |  |
| Mechanical strength   | self-support over 12 m, rugged jacket                        |        |  |
| misc.                 | must meet DUNE purity test requirements; keep diameter small |        |  |

#### **Final Design**

- COTS RG316 RF cables (0.02"-diameter inner conductor is a 7-strand silver-covered copperclad steel (SCCS) wire (1) is enclosed by a Polytetrafluoroethylene (PTFE) insulation layer (2), one silver-covered copper braid shield (3) and 0.102"-diameter Fluorinated Ethylene Propylene (FEP) jacket (4)), terminated by PE4498 SHV connectors.
- Voltage rating of the cable:
  - AC: 2.0 kVrms (manufacturer)
  - DC: 20 kV (calculated); tested up to 8 kV per engineering note EDMS:2086112.
- Voltage rating of SHV connector:
  - AC: 1.1 kVrms (manufacturer)
  - DC: 5 kV standard for SHV connectors
- Current ampacity estimate based on wire gauge: at least 1 A.

#### **CRP patch panel (FD2-VD)**

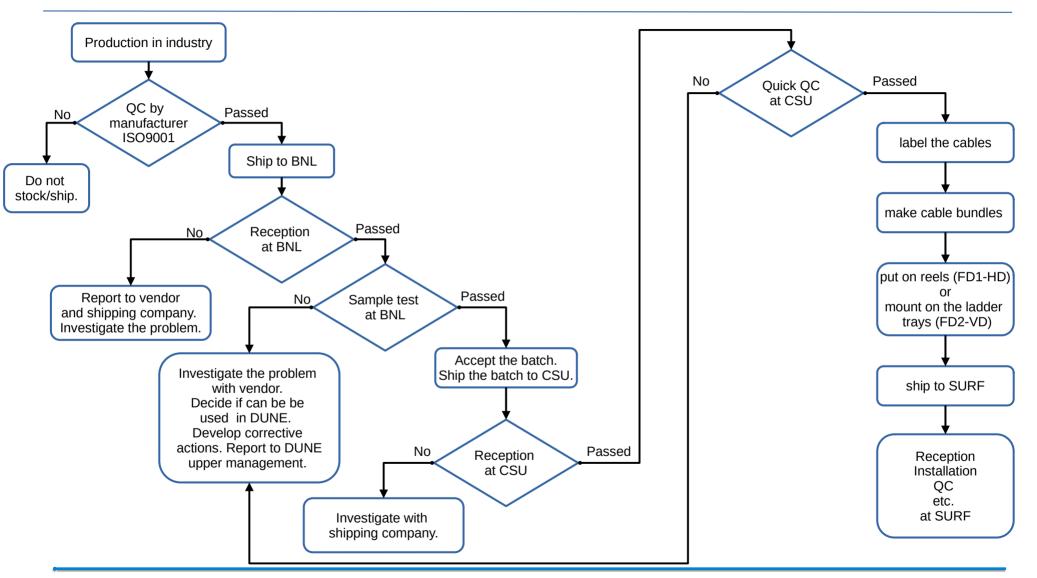



#### Requirements

- Patch long (27m) cold power and data cables to short CRP cables.
- Currents and voltages see previous slides.

## Design

- PCB with soldered mating connectors.
- Metal structure for PCB support.



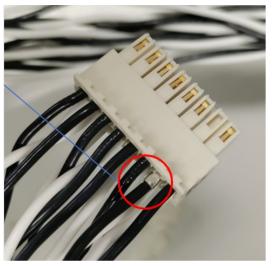



- 4-layer PCB with 1oz copper layers
- Inner layers ground planes
- Outer layers surface-mounted connectors
- Power traces:
  - width: 1 mm
  - length: 8.5 mm
  - calculated min. width required for 2 A current: 0.78 mm
- via: 0.457-mm-diameter
  - calculated ampacity: 3.25 A



## **Logistic and QC flow**



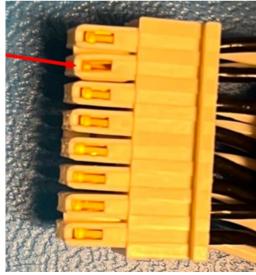



## Sample testing at BNL

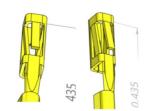
- Visual inspection of cold power cables (Appendix A)
   (look for manufacturing defects on the wires and terminations)
- 2. Visual inspection of cold data cables (Appendix B) (look for manufacturing defects on the wires and terminations)
- 3. Cryo cycling of cold cables and visual inspection (Appendix E) (monitor compatibility of materials with cryogenic environment)
- 4. Continuity test of cold power cables (Appendix C)
- 5. Continuity test of cold data cables (Appendix D) (sanity check to test vendor's QC process)
- 6. Functionality test of cold cables (Appendix F) (to test for and intercept hidden problems early)

(See EDMS:3207305)

## Visual inspection of cold power cables

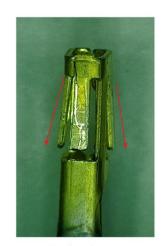



Potential problems:


- 1) Excessive stripping of insulation
- 2) Not fully inserted (not latched) pin
- 3) Wrongly inserted (rotated) pin
- 4) Bent contact wings
- 5) Bent latch pin
- 6) Defects in wire insulation
- 7) Loose cloth wrap

+ perform a pull test
















**Defective** 





#### Visual inspection of cold data cables

#### Potential problems

- 1) Excessive stripping of insulation
- 2) Excessive or insufficient application of gray epoxy
- 3) Defects in wire insulation





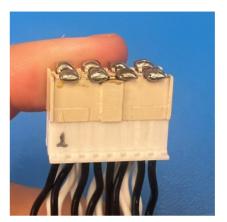


# Cryo cycling of cold cables and visual inspection



- 1) Submerge cables into LN2 for ~10 minutes
- 2) Remove from LN2
- 3) Dry
- 4) Inspect for cables and connectors for cracking, degradation, etc.
- 5) Repeat the cryo cycle



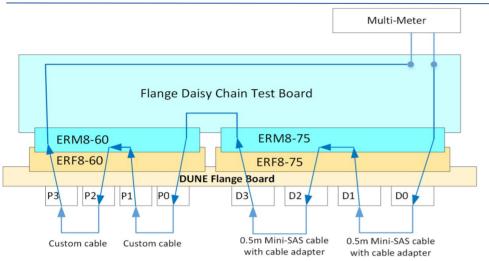


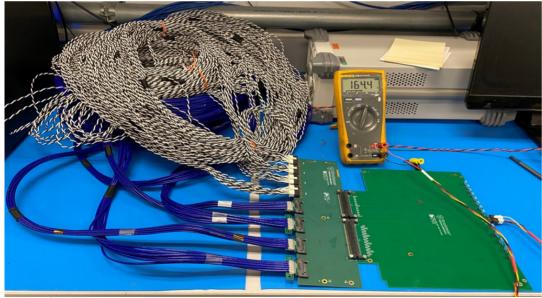





#### Continuity test of cold power cables



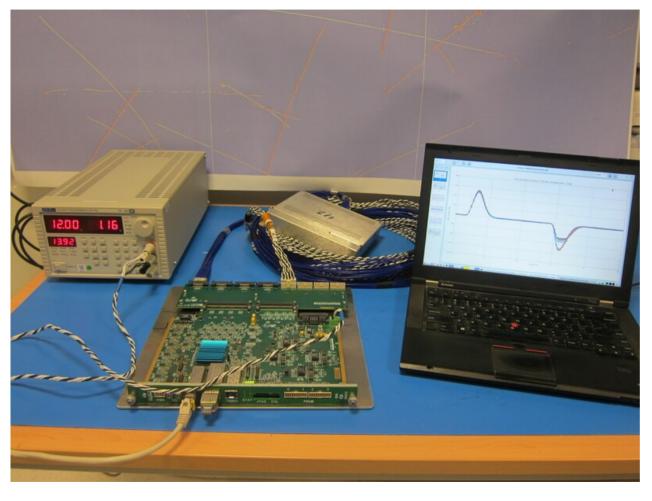





Custom-made connectors for daisy-chaining individual wires (black and white wires separately). Expected measured resistance: 33  $m\Omega/m$  x cable length x 8 (number of wires) for AWG 20 wires.

#### Continuity test of cold data cables






- Custom-made board for daisy-chaining individual wires of data cable.
- Can also be used for continuity testing of white power cables at the same time.
- Expected resistance of 22-m-long data cables is 164  $m\Omega$ .
- Acceptance criteria will be defined for all cable types.



#### **Functionality test of cold cables**



Example of a typical test stand for reception testing of FEMBs or functionality testing of CE cables.

- Up to 4 CE data and 4 power cables (and 4 FEMBs) can be tested simultaneously
- Simple acceptance creterion: pass/fail reported by the test

PART 02 Initial Test < Pass >

#### 2.1 Initial Current Measurement

| Initial Current Measurement |       |         |          |         |
|-----------------------------|-------|---------|----------|---------|
| Measure Object              | BIAS  | LArASIC | ColdDATA | ColdADC |
| V_set/V                     | 5     | 3       | 3        | 3.5     |
| V_meas/V                    | 4.999 | 2.923   | 2.962    | 3.425   |
| I_meas/V                    | 0.003 | 0.439   | 0.168    | 1.648   |
| P_meas/V                    | 0.015 | 1.283   | 0.498    | 5.644   |
| Total Power                 | 7.44  |         |          |         |

#### 2.2 Check FEMB Registers

| COLDATA_REG_1 | ColdADC_REG_1 | COLDATA_REG_2 | ColdADC_REG_2 | Result |
|---------------|---------------|---------------|---------------|--------|
| Pass          | Pass          | Pass          | Pass          | True   |





# **Hipotting of HV bias cables**



Test stand at BNL for characterization of HV cables for operation in Ar gas: Air-tight test chamber, vacuum pump, Ar cylinder, gas/vacuum lines, HV power supply. It can be used for QC testing (hipotting of HV cables for DUNE) as well.

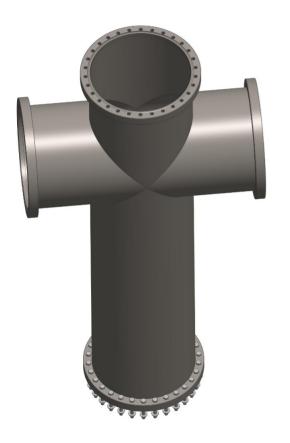
We are planning to replace the test chamber with a larger one assembled from available DUNE parts (next slide).



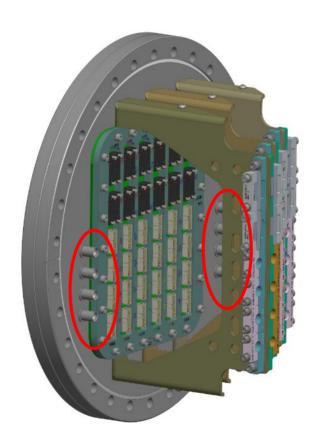


Typical DC rating of SHV connectors: 5 kV

Dielectric strength of air:  $\epsilon$ ~30 kV/cm.


Dielectric strength of pure Ar:  $\sim \alpha \epsilon$ ,  $\alpha = 0.2-0.5$ 

Safest approach: test HV cables in Ar.




#### Hi-capacity test chamber option

#### **CE** cross



# CE flange



- 8 feedthrough SHV connectors for simultaneous testing of HV cables.
- The number of test cables can be further increased by daisy-chaining the cables.
- Can be used for continuity testing of HV cables.

