Draft TMS PDR Chapter

Has been re-organized to match the ND-LAr chapter. Compared to CDR:

- More emphasis on prototyping, construction, installation.
- Less on physics performance.

Steve M, Tom M. and I will finish "gutting" the old material by the end of the week.

If you don't have access to the CDR overleaf, let us know.

	The	Muon	Spectrometer	1	1_
	1.1	Overvi	iew of TMS		1
		1.1.1	Introduction and Scope		1
		1.1.2	Principle of Operation	ļ	5
		1.1.3	Design Parameters	16	<u>5</u>
		1.1.4	Performance	1	7
	1.2	System	n Design	4	1_
		1.2.1	Support Structure	4	1
		1.2.2	Magnet and Power Supplies	42	2
		1.2.3	Detector Modules	4	4
		1.2.4	Detector Electronics	46	5
		1.2.5	WBS Elements	58	3
		1.2.6	Detector Control and Safety Systems	58	3
	1.3	Interfa	ices	63	3
	1.4	Risks a	and Mitigation	63	3
	1.5	Schedu	ule	68	3
	1.6	Protot	yping Plans	69	9
		1.6.1	Scintillator detector Prototyping	69	9
		1.6.2	Construction Time and Motion Studies	69	9
		1.6.3	Magnet Value Engineering	70)
		1.6.4	Signal Cables and Noise	70)
		1.6.5	Steel Plate Thickness	7	1
		1.6.6	Fiber Location Within Scintillator	7	1
		1.6.7	Assembly and Module Strength	7	1
		1.6.8	Fiber attachment to SiPM	72	2
		1.6.9	Coil design		
1	7 C	onstruc	ction and Installation Plans		72
Ι.	-		Steel Procurement		
			Steel support frame		<u>73</u>
	1.	7.3 N	Magnet		<u>73</u>
	1.7.	4 Mo	odule Production		74
	1.7.	5 Cas	ssette Assembly and Transportation		80
	1.7.		ssette Installation		
	1.7.		ectronics		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Where are we now?

A long way from where we need to be!!

Not started (0)

Started (1) [HG: Added post-meeting]

Draft (2)

Edited(3)

Final (4)

Sim / Reco description - (Asa / Jeffrey)

Acceptance - (KiYoung)

Matching to ND-LAr (Kate)

Muon momentum resolution (Jeffrey / Liam)

Muon sign selection (Xiaoyan / Liam)

Module Orientation (Asa)

The Muon Spectrometer PD Report	Responsible	Status
1.1 Overview of TMS	HG/SM	Not started
1.1.1 Introduction and Scope	HG/SM	Not started
1.1.2 Principle of Operation	HG/SM	Not started
1.1.3 Design Parameters	HG/SM	Not started
1.1.4 Physics Performance	HG/SM	Not started
1.2 System Design	TM	Not started
1.2.1 Support Structure	SLAC	Not started
1.2.2 Magnet and Power Supplies	SLAC	Not started
1.2.3 Detector Modules	AF/JA	Not started
1.2.4 Electronics	TK/VP	Draft
1.2.5 WBS Elements	TM	Not started
1.2.6 Detector Control and Safety Systems	TM	Not started
1.3 Interfaces	MO/HB	Not started
1.4 Risks and Mitigation	TM/MO	Not started
1.5 Schedule	TM	Not started
1.6 Prototyping Plans	TM	Not started
1.6.1 Magnet ??	SLAC	Not started
1.6.2 Detector Modules and Cassettes ??	AF/JA/MS	Not started
1.6.3 Electronics ??	TK/VP	Not started
1.7 Construction and Installation Plans	НВ	Not started
1.7.1 Steel Procurement	JN/WC	Not started
1.7.2 Support Structure	SLAC	Not started
1.7.3 Magnet	SLAC	Not started
1.7.4 Module Construction	MS/JA/AF	Not started
1.7.5 Cassette Assembly and Transportation	AF/JA	Not started
1.7.8 Cassette Installation	HB	Not started
1.7.9 Electronics	TK/VP	Not started
PERCENT COMPLETE!		0.01851851852

Gold stars: Asa, Thomas K, Vittorio

Deadlines

Our first PDR review will be the week of Feb. 3 (virtual):

- 1. Do we have all of the required documentation?
- 2. Does the design meet the requirements?
- 3. Have we met the required level of technical maturity?
- 4. High-quality presentations

Will work backwards with Hiro to establish interim deadlines for the PDR Chapter.

We will try to communicate these to everyone by the end of the week.

All results regarding the physics performance of TMS will need to be approved by ND Sim/Reco according to the procedure in dune-doc-28237.

- Tech note(s) on each result
- Presentation and discussion at an ND Sim/Reco meeting

Proposal is to do this in two batches, one ASAP.

TMS Requirements

Requirements:

- Are meant to show flow-down from high-level to technical
- Are meant to be developed *iteratively* and *recursively*

Requirements are very important during the review process.

 Reviewers: does this design meet the requirements? They can view their role as assigning a Pass/Fail and take a very legalistic approach.

ND-LAr chapter has a large number of low-level technical requirements

Feel free to ADD technical requirements!!!

Let's have two focused meetings in the coming weeks:

Requirements/QA/QC/Calibration

Next DUNE Collaboration Meeting

Week of Jan 27-31, CERN. The week before our PDR.

How do we want to use this time? (Or do we?)

- + Opportunity to get people together
- Overhead of travel time

In my opinion, every time we've managed to get a critical mass of people involved in the TMS design together in a room for a few hours, good things have happened.

We could use this time to:

- Do practice talks for the review
- Continue discussions on key elements of the design