
Post talk comments



Comments

• Generally seemed positive.

• Main comments from Jake:
• Consider dividing templates into energies too.

• Some magic about the energy slice which might skip 
unfolding.

• Potentially some confusion about MC/data 
discrepancies, still communicating.

• Started looking through tech note, still trying to 
understand the fit minimisation

• Planning to chat with Jake soon



Fitting discussion



Fitting method

• The fit uses (python) Minuit’s template fit, using 
Dembinski and Abdelmotteleb method.

• D. and A.’s method approximates the Beeston-
Barlow method. 
• Henceforth, will discuss pure Beeston-Barlow, trusting 

the D. and A. method is sensible

• Methods can also deal with weighting the MC 
templates (no longer integer)
• Currently only considering unweighted templates

https://scikit-hep.org/iminuit/notebooks/template_fits.html
https://doi.org/10.1140/epjc/s10052-022-11019-z
https://doi.org/10.1016/0010-4655(93)90005-W
https://doi.org/10.1016/0010-4655(93)90005-W


Fitting method

• Example fit – 2 bins, 2 channels

• MC sample has counts (8, 5)b, (3, 5)o.

• Data has counts (6, 5)

• From MC, create 𝜆1
𝑏 , 𝜆2

𝑏 , 𝜆1
𝑜, 𝜆2

𝑜

• Note: 𝜆2
𝑏/𝑜

= 𝑁𝑀𝐶 − 𝜆1
𝑏/𝑜

• Compare data:

• 6 ~
𝑁𝐷

𝑁𝑀𝐶 𝑃𝑏𝜆1
𝑏 +

𝑁𝐷

𝑁𝑀𝐶 𝑃𝑜𝜆1
𝑜

• 5 ~
𝑁𝐷

𝑁𝑀𝐶 𝑃𝑏𝜆2
𝑏 +

𝑁𝐷

𝑁𝑀𝐶 𝑃𝑜𝜆2
𝑜

• We want data yields 𝑁𝐷𝑃𝑏 , 𝑁𝐷𝑃𝑜

Bin

C
o

u
n

t

1 2

Bin

C
o

u
n

t
1 2

MC

𝜆1
𝑏

𝜆2
𝑏

𝜆1
𝑜

𝜆2
𝑜

𝜆′1
𝑏 + 𝜆′1

𝑜

𝜆′2
𝑏 + 𝜆′2

𝑜

Eqs. 17 and 
2 of BB

https://doi.org/10.1016/0010-4655(93)90005-W


Code

cost_func = cost.Template(

      d_hist,

      generator.bin_edges,       
      templates,                 
      name=generator.labels)

Histogram bin edges:
(𝑁𝑒 + 1, ) + (𝑁𝑏 + 1, ) ∗ 3

Labels for ID, 

𝑁labels = 𝑁temps

One data histogram to be fit (for multiple data 
histograms, combine multiple cost_func instances).
Shape: 𝑁𝑒 , 𝑁𝑏, 𝑁𝑏, 𝑁𝑏

For: 𝑁𝑒 energy bins,
 𝑁𝑏 score bins
 3 scores considered

List of 𝑵temps histograms as templates. There will 

be 𝑁temps yields given by the fit, one for each 
templates

Shape: [ 𝑁𝑒, 𝑁𝑏, 𝑁𝑏, 𝑁𝑏 ] ∗ 𝑁temps 
(Each template has the same shape as the data 

histogram, but there are 𝑁temps in the list)



Fitting options

• 2D histogram displays the total count of events as a 
function of energy and underlying process.

• Each of these points
contains one
(𝑁𝑏 , 𝑁𝑏 , 𝑁𝑏) histogram.

Abs. CEx. Pion

Distribution (template) from this bin



Fitting options – current

• Current idea, do 𝑁𝑒 separate fits, each to one data 
histogram, shape (𝑁𝑏, 𝑁𝑏 , 𝑁𝑏).

• For each bin, get 3 templates.
• For each bin, the templates

are the three on the
corresponding row of this
histogram.

Abs. CEx. Pion

1 set of fit templates is one 
row of this histogram.
Each row of the histogram is 
fitted to unique, non-
overlapping data histograms



Fitting options – free-for-all

• A valid (but poor) fitting option would be to do one 
fit to all data (𝑁𝑏 , 𝑁𝑏 , 𝑁𝑏), where each energy and 
process gets its own template.

• 3 × 𝑁𝑒 templates total,
each (𝑁𝑏 , 𝑁𝑏, 𝑁𝑏)

Abs. CEx. Pion

Each point is passed as a 
(𝑁𝑏, 𝑁𝑏, 𝑁𝑏) template.
Fit to one data histogram 
which includes all energies.
Fit predicts a count for each 
template.



Fitting options – energy fixed

• An attempt at simultaneous energy fitting could 
use one data histogram, which includes energy 
bins: (𝑁𝑒 , 𝑁𝑏 , 𝑁𝑏, 𝑁𝑏).

• 3 templates total,
each (𝑁𝑒 , 𝑁𝑏 , 𝑁𝑏 , 𝑁𝑏)

• Bad, since this doesn’t
allow the energy shape
to change

Abs. CEx. Pion

Relative fractions of events 
fixed in by templates – bad!



Fitting options – energy binned

• Use one data histogram, including energy bins: 
(𝑁𝑒 , 𝑁𝑏 , 𝑁𝑏 , 𝑁𝑏). But separate templates for each 
energy bin.

• 3 × 𝑁𝑒 templates total,
each (𝑁𝑒 , 𝑁𝑏 , 𝑁𝑏 , 𝑁𝑏)

• Each template has
non-zero values in exactly
one of the indices across
the first dimension (𝑁𝑒).

Extract template 
binned in energy,
but with only
one non-zero
bin.

Each process is then 
given as its own 
template, for 3 × 𝑁𝑒 
total.



Energy binned vs. separate fits

• Use 50% MC as template, 50% as “data”.
• Not done any energy weighting.

• Performed current fit (separate fits for each energy)

• Perform the energy binned (final option 
mentioned).

• Investigated the difference between the two:
Current – E. binned Current / E. binned  -  1



Other options – energy unfolding

• In the energy fitting method, templates are picked 
by the same binning as the y-axis
• In this case, beam instrumentation energy

rather than interaction energy.

• The histogram could be produced
from MC truth interaction
energy, but split into
templates via reco.
Interaction energy “Artistic 

representation” of 
binning in reco. 
energy, but selecting 
in MC true energy



Other options – using the 
nuisances
• The fit must produce nuisances per bin of the fit for 

each template.

• In principle, we could try to
extract these and
“manually” reconstruct
the energy binning

Abs. CEx. Pion

𝜆0

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6

𝜆7

𝜆8

𝜆9

Extract nuisances to 
reconstruct shape. Probably 
possible, but definitely 
complicated… (e.g. 
correlations between overall 
norm and the nuisances)



PFO count variation - comparison
• Plots compare all MC events (not split by true process) vs. data 

events.

15

1 PFO in event scores

24.10.24 Dennis Lindebaum | Fit performance of GNN scores

2D hists: excess in data as a 
function of GNN score over 
range between 1-12 PFOs 
per event (13+ PFO excluded)



Particle content
• MC vs. data discrepancy could be caused by mismodelling of 

the species expected from nuclear events.

• Use a simple BDT (same BDT used for PID in the full network) 

to estimate proportions of particles in MC vs. data.

16

BDT classification count (solid) vs. back-
tracked classification count (dashed)

24.10.24 Dennis Lindebaum | Fit performance of GNN scores



Reweighting events
un

𝑤𝑝 =
𝑁𝑝

𝑑𝑎𝑡𝑎

𝑁𝑡𝑜𝑡
𝑑𝑎𝑡𝑎 ÷

𝑁𝑝
𝑀𝐶
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𝑁: all events
𝑛: particular event
𝑝: particle species



Reweighting events
un

𝑤𝑝 =
𝑁𝑝
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𝑛: particular event
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After weighting
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If the re-weighting accounts to 
the MC/data discrepancy, the 
MC/reweighted difference 
should match the MC/data 
difference.



Upstream correction fit
Recall previously, fit of upstream energy 
correction had these excessive errors (left).
Changing the equation fixes this:
Left: 𝑝2𝑥2 +  𝑝1𝑥 + 𝑝0

Below: 𝑝2(𝑥 − 𝑝1)2+𝑝0



Upstream correction

• Systematic
offset between
Gaussian mean
(black) and
arithmetic
mean (blue)

• Not seen in
2GeV

• Scrapers?



Code updates



Weighting schemes

• Chatted with Jake

• Recommended start with simple event by event 
weights, not Geat4Reweight

• 6.6-6.8 in his technote show a series of ideas

• Find some distribution about i.e. the leading energy 
proton

• Create weights from these histograms



Weighting schemes



Analysis fitting!



MC-MC fits (Asimov)

• In principle, an Asimov fit fits the data with itself.

• There are still some effects which change the 
values used:
• Energy binning by reconstructed vs. true interaction 

energies

• Beam reweighting (this shouldn’t happen in a true 
Asimov fit, but we can test a small effect from difference 
between beam with and without the MC training 
sample)



Reconstructed slicing, no weights

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion

Init. pred 52 0 1804 525 0 16132 646 0 13304 155 0 1964

True yield 97 83 1676 1001 763 14893 1203 686 12061 263 107 1749

Fit yield 97.0 82.8 1676.5 1001.2 765.2 14892.7 1203.0 686.2 12060.5 263.0 107.0 1749.1

Fit unc. 21.8 66.2 89.4 72.9 176.3 250.9 72.8 160.6 229.2 29.8 55.7 82.8

• When using reconstructed slicing with no 
weighting, the templates and data exactly match

• Excellent agreement expected



Reconstructed slicing, weighted

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion

Init. pred 52 0 1804 525 0 16132 646 0 13304 155 0 1964

True yield 97 83 1676 1001 763 14893 1203 686 12061 263 107 1749

Fit yield 155.1 55.7 1642.1 2437.0 797.8 13456.6 2698.9 773.1 10522.6 425.6 108.8 1588.2

Fit unc. 47.7 65.4 94.0 240.0 175.7 315.5 240.0 161.1 296.7 75.0 53.0 90.1

Pull 1.22 -0.42 -0.36 5.98 0.20 -4.55 6.23 0.54 -5.19 2.17 0.03 -1.78

• Same samples for each, but
slight differences due to beam
weights applied to the
templates.



True slicing, no weights
3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion

Init. pred 52 0 1804 525 0 16132 646 0 13304 155 0 1964

True yield 97 83 1676 1001 763 14893 1203 686 12061 263 107 1749

Fit yield 220.2 147.1 1491.7 2797.1 457.5 13535.1 3337.7 1166.3 9639.4 678.8 289.5 1222.3

Fit unc. 63.9 65.1 98.1 292.1 193.2 346 320.5 178 346.4 142.7 72 116.9

Pull 1.93 0.98 -1.88 6.15 -1.58 -3.92 6.66 2.70 -6.99 2.91 2.53 -4.51

• Now templates are
constructed from true
energies, data from reco.

• No reweighting



True slicing, no weights
3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion Abs. CEx. Pion

Init. pred 52 0 1804 525 0 16132 646 0 13304 155 0 1964

True yield 97 83 1676 1001 763 14893 1203 686 12061 263 107 1749

Fit yield 164.2 134.4 1559.3 2852.1 453.6 13517 3485 1179.8 9522.7 614.6 303.6 1274.1

Fit unc. 51.1 58.7 88.3 308.2 188.6 350.7 341.6 177.5 357.9 135.4 67.7 113

Pull 1.32 0.88 -1.32 6.01 -1.64 -3.92 6.68 2.78 -7.09 2.60 2.90 -4.20

• Templates binned in true energy

• Templates reweighted



Energy binning



Choose set of fixed bins

• Plan to construct a set of bins before running more 
robustness type tests
• Fix the bins now, for consistency

• Update required for
variable widths

• We want at least N
events per bin, and
minimise the
number of events
this makes invalid



Energy width optimisation

• I spent way too much effort on this…
• But it was too fun a challenge to ignore!

• Consider projecting along the 𝐸𝑖𝑛𝑖𝑡 = 𝐸𝑖𝑛𝑡 line

• The perpendicular
distance is proportional
to the bin width

• Let’s calculate the
number of events
in/excluded by some
bin edges…



Optimisation strategy

• We can calculate a loss:

• 𝐿 = ൝𝑚1.5 × 𝑒
5∗(𝑖−6000)

6000

∞

, 𝑖 ≥ 4000
, otherwise

 

•  𝑖=number of valid
events in bin

• 𝑚=number of events
excluded from
𝐸𝑖𝑛𝑖𝑡 , 𝐸𝑖𝑛𝑡 in same bin

• View current bins
against this loss



Optimisation strategy

• Given some upper bin edge

• Optimum lower bin
edge is minimum
along line of const.
upper bin (𝑦 = −𝑥)

Upper edge fixed

Optimum width is loss 
minimum along this line



First bin optimisation

• Naïvely, I applied the
same rules to the first
bin.

• Picks out the tangent
of -1 gradient

• Actually want tangent
of infinite gradient.
• I was aiming for this from

the start, but I didn’t account for silly coding!

Lower bin edge 
should be on this line



Results

• 9 bins

• 5981 missed events 
(11.49%)

• Occupancies:
• [4001, 5875, 5935, 5993, 

4228, 5998, 5919, 6000, 
2118]



Results

• Can tune the parameters

• Target number of bins via the target count per bin.

• First bin occupancy

• Importance of missing events vs. having many

• Probably should relax the target count addition to 
make the minimum less deep (do some calculus!)



Other considerations

• Missing events bias against high cross-section 
interactions in energy slice version

• 𝑃 selected event  𝛼 𝐸∆׬
𝑃(∆𝐸)𝑃(interact in ∆𝐸) 𝛼 1/𝜎

• ∆𝐸(𝐸𝑖𝑛𝑖𝑡; bins) runs over possible energy range before 
first bin boundary

• Likely less important for thin slice version of the 
analysis (particles probably start interacting 
instantly, can add an arbitrarily small initial bin)

• Thin slice method should be reassessed (but 
perhaps post-thesis worthy result…)



Unfolding – total or per process

• Current binning has too many bins for nice 
unfolding.

• Small bins to
fit, large bins
to unfold?



Unfolding – total or per process

• Assume detector has process
invariant response.

• 𝑃 𝐸𝑟𝑒𝑐𝑜 𝐸𝑡𝑟𝑢𝑒

• Unfolding inverts this to estimate:
𝑃 𝐸𝑡𝑟𝑢𝑒 𝐸𝑟𝑒𝑐𝑜  

• This is performed on histograms. Either:
• Interacting yields produced post-fit

• Incident yields pre-fit (one could try constructing this via 
moving fractions of histograms around)



Unfolding – total or per process

• We want to find 𝐸𝑡𝑟𝑢𝑒,𝑖 which
is the true energy of the process,
𝑖 we want to measure

• As such we now have multiple
“causes”, dependent on the {𝜎𝑖}

• 𝑃(𝐸𝑡𝑟𝑢𝑒,𝑖|𝐸𝑟𝑒𝑐𝑜,𝑗) to unfold post-classification

• Assume detector-independent: 𝑃 𝐸𝑡𝑟𝑢𝑒 𝐸𝑟𝑒𝑐𝑜
𝑃 𝐸𝑡𝑟𝑢𝑒,𝑖 𝐸𝑟𝑒𝑐𝑜,𝑗  

= න
𝐸𝑡𝑟𝑢𝑒

𝑃 𝐸𝑡𝑟𝑢𝑒 𝐸𝑟𝑒𝑐𝑜 ×

𝑃(𝐸𝑡𝑟𝑢𝑒│𝑖) 𝑃(𝐸𝑟𝑒𝑐𝑜,𝑗 ∈ 𝑖)



Unfolding – total or per process

𝐸𝑡𝑟𝑢𝑒׬

𝑃 𝐸𝑡𝑟𝑢𝑒 𝐸𝑟𝑒𝑐𝑜  ×

𝑃 𝐸𝑡𝑟𝑢𝑒 𝑖 𝑃(𝐸𝑟𝑒𝑐𝑜,𝑗 ∈ 𝑖)
 

• 𝑃 𝐸𝑡𝑟𝑢𝑒 𝑖  depends on 𝜎𝑖.
• This cannot be determined 

from MC alone, since it is based 
on the actual cross-section. 

• Factorising out means this 
could be iteratively improved, 
in principle.

• Probability that an event 
classified as 𝑗 is actually process 𝑖

• For unfolding pre-fitting, this is 
summed over, so can be ignored:

𝑃 𝐸𝑡𝑟𝑢𝑒,𝑖 𝐸𝑟𝑒𝑐𝑜

= ෍

𝑗

𝑃(𝐸𝑡𝑟𝑢𝑒,𝑖|𝐸𝑟𝑒𝑐𝑜,𝑗)

• For unfolding post-fitting, we 

assume 𝑃 𝐸𝑟𝑒𝑐𝑜,𝑗 ∈ 𝑖 = 𝛿𝑖,𝑗

Unfolded with no knowledge of process

Ignore this 
term!
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