Post talk comments

Comments

- Generally seemed positive.
- Main comments from Jake:
	- Consider dividing templates into energies too.
	- Some magic about the energy slice which might skip unfolding.
	- Potentially some confusion about MC/data discrepancies, still communicating.
- Started looking through tech note, still trying to understand the fit minimisation
- Planning to chat with Jake soon

Fitting discussion

Fitting method

- The fit uses (python) [Minuit's template fit](https://scikit-hep.org/iminuit/notebooks/template_fits.html), using Dembinski [and Abdelmotteleb](https://doi.org/10.1140/epjc/s10052-022-11019-z) method.
- D. and A.'s method approximates the [Beeston-](https://doi.org/10.1016/0010-4655(93)90005-W)[Barlow method](https://doi.org/10.1016/0010-4655(93)90005-W).
	- Henceforth, will discuss pure Beeston-Barlow, trusting the D. and A. method is sensible
- Methods can also deal with weighting the MC templates (no longer integer)
	- Currently only considering unweighted templates

Fitting method

- Example fit 2 bins, 2 channels
- MC sample has counts $(8, 5)^b$, $(3, 5)^o$.
- Data has counts (6, 5)
- From MC, create λ_1^b , λ_2^b , λ_1^o , λ_2^o Eqs. 17 and
2 of <u>BB</u> Note: $\lambda_2^{b/o} = N^{MC} - \lambda_1^{b/o}$ 2 of [BB](https://doi.org/10.1016/0010-4655(93)90005-W)
	- Compare data:

• We want data yields N^DP^b , N^DP^o

List of **N^{temps} histograms as templates**. There will be N^{temps} yields given by the fit, one for each templates

Shape: $[(N_e, N_b, N_b, N_b)] * N^{\text{temps}}$ (Each template has the same shape as the data histogram, but there are N^{temps} in the list)

Fitting options

• 2D histogram displays the total count of events as a function of energy and underlying process.

Fitting options – current

• Current idea, do N_e separate fits, each to one data histogram, shape (N_h, N_h, N_h) .

Fitting options – free-for-all

• A valid (but poor) fitting option would be to do one fit to all data (N_h, N_h, N_h) , where each energy and process gets its own template.

Fitting options – energy fixed

- An attempt at simultaneous energy fitting could use one data histogram, which includes energy bins: (N_e, N_b, N_b, N_b) .
- 3 templates total, each (N_e, N_b, N_b, N_b)
- Bad, since this doesn't allow the energy shape to change

Relative fractions of events

fixed in by templates – bad!

Fitting options – energy binned

- Use one data histogram, including energy bins: (N_e, N_b, N_b, N_b) . But separate templates for each energy bin.
- 3 \times N_e templates total, each (N_e, N_b, N_b, N_b)
- Each template has non-zero values in exactly one of the indices across the first dimension (N_e).

Energy binned vs. separate fits

- Use 50% MC as template, 50% as "data".
	- Not done any energy weighting.
- Performed current fit (separate fits for each energy)
- Perform the energy binned (final option mentioned).
- Investigated the difference between the two: Current – E. binned Current / E. binned - 1

Other options – energy unfolding

• In the energy fitting method, templates are picked by the same binning as the y-axis

> 2800 2600 2400

- In this case, beam instrumentation energy rather than interaction energy.
- The histogram could be produced from MC truth interaction energy, but split into ากลร templates via reco. 3400 Interaction energy $\left\| \begin{matrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{matrix} \right\|_{\infty}$ "Artistic represer

Other options – using the nuisances

- The fit must produce nuisances per bin of the fit for each template.
- In principle, we could try to extract these and "manually" reconstruct the energy binning

PFO count variation - comparison

• Plots compare all MC events (not split by true process) vs. data events.

Dennis Lindebaum | Fit performance of GNN scores

Particle content

- MC vs. data discrepancy could be caused by mismodelling of the species expected from nuclear events.
- Use a simple BDT (same BDT used for PID in the full network) to estimate proportions of particles in MC vs. data.

Reweighting events

Reweighting events

After weighting

If the re-weighting accounts to the MC/data discrepancy, the MC/reweighted difference should match the MC/data difference.

12

 $10 -$

6

 $\overline{2}$

 $12 -$

 $10 -$

 $8 -$

 $6 -$

 $\overline{2}$

 $\overline{0.0}$

PFOs in event

 0.0

 $\overline{0.2}$

 $\frac{1}{0.2}$

 0.4 0.6
Pion score

 $\overline{0.6}$

Abs. score

 0.4

 $\frac{1}{0.8}$

 0.8

 1.0

 1.0

PFOs in event

Upstream correction fit

Recall previously, fit of upstream energy correction had these excessive errors (left). Changing the equation fixes this: Left: $p_2 x^2 + p_1 x + p_0$ Below: $p_2(x - p_1)^2 + p_0$

Upstream correction

- Systematic offset between Gaussian mean (black) and arithmetic mean (blue)
- Not seen in 2GeV
- Scrapers?

Code updates

App order:

- 1. Normalisation
- $2.$ **Beam quaility**
- $3.$ **Beam scraper**
- 4. **Photon correction**
- 5. Selection
- 6. Reweight
- 7. Upstream correction
- 8. Toy parameters
- 9. Analysis inputs
- 10. Analyse

NEW order:

- 1. Normalisation
- 2. Beam quality
- 3. Beam scraper
- 4. (Per event) Photon correction
- 5. Event selection (maybe swap before photon correction?)
- 6. GNN results/PFO selection
- 7. Reweight
- 8. Upstream correction
- 9. Toy parameters
- 10. Analysis inputs
- 11. Analyse

Weighting schemes

- Chatted with Jake
- Recommended start with simple event by event weights, not Geat4Reweight
- 6.6-6.8 in his technote show a series of ideas
- Find some distribution about i.e. the leading energy proton
- Create weights from these histograms

Weighting schemes

Figure 36: Efficiencies of other events (to be selected as other) as functions of leading-momentum π^+ momentum in various incident π^+ kinetic energy regions.

Analysis fitting!

MC-MC fits (Asimov)

- In principle, an Asimov fit fits the data with itself.
- There are still some effects which change the values used:
	- Energy binning by reconstructed vs. true interaction energies
	- Beam reweighting (this shouldn't happen in a true Asimov fit, but we can test a small effect from difference between beam with and without the MC training sample)

Reconstructed slicing, no weights

- When using reconstructed slicing with no weighting, the templates and data exactly match
- Excellent agreement expected

Reconstructed slicing, weighted

• Same samples for each, but slight differences due to beam weights applied to the templates.

True slicing, no weights

- Now templates are constructed from true energies, data from reco.
- No reweighting

True slicing, no weights

- Templates binned in true energy
- Templates reweighted

Energy binning

Choose set of fixed bins

- Plan to construct a set of bins before running more robustness type tests
	- Fix the bins now, for consistency
- Update required for variable widths
- We want at least *N* events per bin, and minimise the number of events this makes invalid

Energy width optimisation

- I spent way too much effort on this…
	- But it was too fun a challenge to ignore!
- Consider projecting along the $E_{init} = E_{int}$ line
- The perpendicular distance is proportional to the bin width
- Let's calculate the number of events in/excluded by some bin edges…

Optimisation strategy

• We can calculate a loss:

•
$$
L = \begin{cases} m^{1.5} \times e^{\frac{5*(i-6000)}{6000}}, & i \geq 4000 \\ \infty, & \text{otherwise} \end{cases}
$$

- \bullet *i*=number of valid events in bin
- m =number of events excluded from E_{init} , E_{int} in same bin
- View current bins against this loss

Optimisation strategy

• Given some upper bin edge

First bin optimisation

- Naïvely, I applied the same rules to the first bin.
- Picks out the tangent of -1 gradient
- Actually want tangent of infinite gradient.
	- I was aiming for this from the start, but I didn't account for silly coding!

Results

- Can tune the parameters
- Target number of bins via the target count per bin.
- First bin occupancy
- Importance of missing events vs. having many
- Probably should relax the target count addition to make the minimum less deep (do some calculus!)

Other considerations

- Missing events bias against high cross-section interactions in energy slice version
	- $P(\text{selected event}) \alpha \int_{\Delta E} P(\Delta E) P(\text{interact in } \Delta E) \alpha \ 1/\sigma$
	- $\Delta E(E_{init}; \text{bins})$ runs over possible energy range before first bin boundary
- Likely less important for thin slice version of the analysis (particles probably start interacting instantly, can add an arbitrarily small initial bin)
- Thin slice method should be reassessed (but perhaps post-thesis worthy result…)

- Current binning has too many bins for nice unfolding.
- Small bins to fit, large bins to unfold?

- Assume detector has process invariant response.
- $P(E_{reco} | E_{true})$
- Unfolding inverts this to estimate: $P(E_{true}|E_{reco})$

- This is performed on histograms. Either:
	- Interacting yields produced *post*-fit
	- Incident yields *pre*-fit (one could try constructing this via moving fractions of histograms around)

- We want to find $E_{true,i}$ which is the true energy of the process, i we want to measure
- As such we now have multiple "causes", dependent on the $\{\sigma_i\}$

- \bullet $P(E_{true, i} | E_{reco, j})$ to unfold *post*-classification
- Assume detector-independent: $P(E_{true}|E_{reco})$ $P(E_{true,i}|E_{reco,i})$

$$
= \int_{E_{true}} P(E_{true} | i) P(E_{reco,j} \in i)
$$

Unfolded with no knowledge of process³²⁰⁰

 $\int_{E true}$ $P(E_{true} | E_{reco}) \times$ $P(E_{true} | i) P(E_{reco,j} \in i)$

- $P(E_{true} | i)$ depends on σ_i .
- This cannot be determined from MC alone, since it is based on the actual cross-section.
- Factorising out means this could be iteratively improved, in principle.

• Probability that an event classified as j is actually process i

Ignore this

term!

• For unfolding *pre*-fitting, this is summed over, so can be ignored: $P(E_{true,i}|E_{reco})$

$$
= \sum_{j} P(E_{true,i} | E_{reco,j})
$$

• For unfolding *post*-fitting, we assume $P(E_{reco,i} \in i) = \delta_{i,i}$