Post talk comments



Comments

* Generally seemed positive.

* Main comments from Jake:
* Consider dividing templates into energies too.

* Some magic about the energy slice which might skip
unfolding.

* Potentially some confusion about MC/data
discrepancies, still communicating.

 Started looking through tech note, still trying to
understand the fit minimisation

* Planning to chat with Jake soon



Fitting discussion



Fitting method

* The fit uses (python) Minuit’s template fit, using
Dembinski and Abdelmotteleb method.

* D. and As method approximates the Beeston-
Barlow method.

* Henceforth, will discuss pure Beeston-Barlow, trusting
the D. and A. method is sensible

* Methods can also deal with weighting the MC
templates (no longer integer)

e Currently only considering unweighted templates


https://scikit-hep.org/iminuit/notebooks/template_fits.html
https://doi.org/10.1140/epjc/s10052-022-11019-z
https://doi.org/10.1016/0010-4655(93)90005-W
https://doi.org/10.1016/0010-4655(93)90005-W

Fitting method

* Example fit — 2 bins, 2 channels MC

* MC sample has counts (8, 5)°, (3,5)°. 444

* Data has counts (6, 5) < Ew
g e 280
2ofBB Note: A" " = N"* — 4, 1 , Bin

 Compare data:

NP .., NP
¢ 6~WP /11 +WPO/1(1)

NP ., NP
e 5 NWP /12 +WPO/18

* We want data yields NP P?, NP p°

Count



https://doi.org/10.1016/0010-4655(93)90005-W

One data histogram to be fit (for multiple data
histograms, combine multiple cost_func instances).

Cod e Shape: (N,, Ny, Np, Np)
For: N, energy bins,
N, score bins
3 scores considered

cost.Template(

d hist .« Histogram bin edges:
_— J /(Ne+1')+(Nb+1,)*3
generator.bin_edges,
o Labels for ID,

templates ) /_)Nlabels _ temps
=generator.labels)

cost func

List of NY®MPS histograms as templates. There will

be NY€MPS yie|ds given by the fit, one for each
templates

Shape: [(N,, N, N, N},)] * Nt€mPps

(Each template has the same shape as the data
histogram, but there are NMPS jn the list)



Fitting options

* 2D histogram displays the total count of events as a
function of energy and underlying process.

* Each of these points 1600 e 05- CEX. Pion

contains one
(Np, Ny, Np,) histogram.

Distribution (template) from this bin
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Fitting options — current

* Current idea, do N, separate fits, each to one data
histogram, shape (Ny, Ny, Np).

* For each bin, get 3 templates. 4. CEXx. Pion

* For each bin, the templates
are the three on the 3400
corresponding row of this

histogram. /ﬂ

1 set of fit templates is one 3000
row of this histogram.

Each row of the histogram is
fitted to unique, non- Jeo0
overlapping data histograms
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Fitting options — free-for-all

* A valid (but poor) fitting option would be to do one
fit to all data (N, Ny, N3), where each energy and
process gets its own template.

3600

Abs. CEx. Pion

* 3 X N, templates total,
each (NbJNb’Nb)

Each point is passed as a
(Ny, Np, Np) template.
Fit to one data histogram
which includes all energies.
Fit predicts a count for each
template.

Energy/MeV
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Fitting options — energy fixed

* An attempt at simultaneous energy fitting could

use one data histogram, which includes energy

bins: (Ne, Nb' Nb' Nb)
e 3 templates total,

each (Ne’Nb'Nb'Nb) 3400

* Bad, since this doesn’t
allow the energy shape
to change

Abs. CEx. Pion

3600

3000

Energy/MeV

2800

Relative fractions of events
fixed in by templates — bad!
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Fitting options — energy binned

* Use one data histogram, including energy bins:
(N,, Ny, Ny, Np). But separate templates for each
energy bin.

Extract template

* 3 X N, templates total, Einned:\n energy,
ut with only
each (Ne’Nb’Nb’Nb) g‘i’

one non-zero
bin.

e Each template has
non-zero values in exactly

0.5 1.0 15 2.0 2.5
Underlying process index

one of the indices across - Each process is then
the first dimension (N,). 1"

Energy/MeV
s

given as its own
zaooi template, for 3 X Ne

~~_ total.

—
0.5 10 15 2.0 2.5
Underlying process index




Energy binned vs. separate fits

* Use 50% MC as template, 50% as “data”.
* Not done any energy weighting.

* Performed current fit (separate fits for each energy)

* Perform the energy binned (final option
mentioned).

* Investigated the difference between the two:
Current — E. binned Current / E. binned - 1

100
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Other options — energy unfolding

* In the energy fitting method, templates are picked
by the same binning as the y-axis

* |n this case, beam instrumentation energy
rather than interaction energy.

* The histogram could be produced
from MC truth interaction

energy, but split into
templates via reco.
Interaction energy

3000
(o))

0.5 1.0 15 2.0 2.5
Underlying process index

~ “Artistic
\\ representation” of
binning in reco.

energy, but selecting
in MC true energy

Energy/MeV
W w w
[ =3
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Other options — using the
nuisances

* The fit must produce nuisances per bin of the fit for
each template.

* In principle, we could try to Abs. CEx. pion
extract these and
“manually” reconstruct 3400

the energy binning
D
s
%3000
: c
Extract nuisances to I
reconstruct shape. Probably

possible, but definitely
complicated... (e.g.
correlations between overall

d h . 0.0 0.5 1.0 1.5 2.0 2.5 3.0
norm and the nuisances) Underlying process index




PFO count variation - comparison

* Plots compare all MC events (not split by true process) vs. data

events.

1 PFO in event scores
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Particle content

 MC vs. data discrepancy could be caused by mismodelling of
the species expected from nuclear events.

« Use a simple BDT (same BDT used for PID in the full network)
to estimate proportions of particles in MC vs. data.

[ Photon (data)

r BDT classification count (solid) vs. back-
tracked classification count (dashed)
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PFOs in bin, normed to total PFO count

Rewelighting events
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PFOs in bin, normed to total PFO count

Rewelighting events
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After weighting

If the re-weighting accounts to
the MC/data discrepancy, the 5]
MC/reweighted difference

should match the MC/data 0 Hensoe P
difference.
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M(AEupsrream) (MeV)
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Upstream correction
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Code updates

App order:
1. Mormalisation
2. Beam guaility
3. Beam scraper
4. Photon correction
5. Selection
6. Reweight
7. Upstream correction
8. Toy parameters
9. Analysis inputs
10. Analyse
NEW order:
1. NMNormalisation
2. Beam quality
3. Beam scraper
4. (Per event) Photon correction
5. Event selection (maybe swap before
photon correction?)
6. GNN results/PFO selection
7. Reweight
8. Upstream correction
9. Toy parameters

10. Analysis inputs
11. Analyse



Weighting schemes

* Chatted with Jake

* Recommended start with simple event by event
weights, not Geat4Reweight

* 6.6-6.8 in his technote show a series of ideas

* Find some distribution about i.e. the leading energy
proton

* Create weights from these histograms



Figure 36: Efficiencies of other events (to be selected as other) as functions of leading-momentum 7+

Weighting schemes

momentum in various incident 7T kinetic energy regions.
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Analysis fitting!



MC-MC fits (Asimov)

* In principle, an Asimov fit fits the data with itself.

* There are still some effects which change the
values used:
* Energy binning by reconstructed vs. true interaction
energies

* Beam reweighting (this shouldn’t happen in a true
Asimov fit, but we can test a small effect from difference
between beam with and without the MC training

sample)



Reconstructed slicing, no weights

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion
Init. pred | 52 0 1804 | 525 0 16132 | 646 |0 13304 | 155 |0 1964
True yield |97 83 1676 | 1001 | 763 14893 | 1203 | 686 12061 | 263 | 107 | 1749
Flt YIeld 97.0 82.8 1676.5 1001.2 | 765.2 14892.7 | 1203.0 | 686.2 12060.5 | 263.0 | 107.0 | 1749.1
Fit unc. 218 |66.2 |89.4 |729 |[1763 |2509 |728 |160.6 |229.2 |298 |[557 |828

* When using reconstructed slicing with no
weighting, the templates and data exactly match

* Excellent agreement expected




Reconstructed slicing, weighted

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV
Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion
Init. pred |52 0 1804 |525 0 16132 |646 0 13304 |155 |0 1964

True yie|d 97 83 1676 |1001 |763 14893 1203 |686 12061 |263 107 1749

Fit yield 155.1 ([55.7 1642.1 |2437.0 |797.8 |13456.6 |2698.9 (773.1 |10522.6 |425.6 |108.8 |1588.2

Fit unc. 477 |65.4 [94.0 [240.0 [175.7 (3155 |240.0 |161.1 |296.7 |[75.0 [53.0 |90.1

Pull 1.22 -0.42 |-0.36 |5.98 0.20 -4.55 6.23 0.54 -5.19 2.17 0.03 -1.78

1z error region gaussian
7

 Same samples for each, but
slight differences due to beam =
weights applied to the
templates.




True slicing, no weights

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion
Init. pred |52 0 1804 |525 0 16132 |646 0 13304 |[155 |0 1964
True yield |97 83 1676 |1001 |763 14893 1203 |686 12061 [263  |107  |1749
Fit yield 220.2 |147.1 |1491.7 |2797.1 |457.5 |[13535.1 |3337.7 [1166.3 |9639.4 [678.8 |289.5 |[1222.3
Fit unc. 63.9 |65.1 [98.1 [292.1 [193.2 (346 3205 |[178 346.4 |142.7 |72 116.9
Pull 1.93 (098 |(-1.88 [6.15 |[-1.58 |-3.92 |[666 |2.70 |-699 |291 |2.53 |[-4.51

* Now templates are
constructed from true
energies, data from reco.

* No reweighting
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True slicing, no weights

3.1-2.825 GeV 2.825-2.55 GeV 2.55-2.275 GeV 2.275-2.0 GeV

Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion | Abs. | CEx. | Pion
Init. pred |52 0 1804 |525 0 16132 |646 0 13304 |[155 |0 1964
True yield |97 83 1676 |1001 |763 14893 1203 |686 12061 [263  |107  |1749
Fit yield 164.2 |134.4 |1559.3 |2852.1 (453.6 |13517 (3485 |1179.8 |9522.7 |614.6 [303.6 |1274.1
Fit unc. 51.1 |58.7 [88.3 [308.2 |188.6 |[350.7 |341.6 |[177.5 |357.9 (1354 |67.7 113
Pull 132 |0.88 |[-1.32 |6.01 |-1.64 |-392 |6.68 |2.78 |-7.09 |2.60 |2.90 |-4.20

* Templates binned in true energy

* Templates reweighted




Energy binning



Choose set of fixed bins

* Plan to construct a set of bins before running more

robustness type tests

* Fix the bins now, for con5|stency

3400 =

* Update required for =

variable widths > 32007

« We want at least N 5 28003
events per bin, and 5 -

minimise the 3 2400
number of events £ ;50
this makes invalid 2000 =

1800 =

2000 2250 2500 2750 3000 3250 3500
Initial energy

10!

10°



Energy width optimisation

* | spent way too much effort on this...
e But it was too fun a challenge to ignore!

* Consider projecting along the E;,,;; = E;¢ line

* The perpendicular

700

distance is proportional &

to the bin width

e Let’s calculate the
number of events
in/excluded by some
bin edges...

Distance from diag

ul
o
o

B
o
o

||||||*|||||.|_.||||||||||||||

w
o
o

]
o
o

|
o
o

o

=

EEA RREED B |
2000 2250 2500 2750 3000 3250 3500

Diagonal projection/Mev

10?

10!

10°



Optimisation strategy

 \We can calculate a loss:
(

o] = <m1'5 X e 6000

\ 00

 [=number of valid
events in bin

* m=number of events
excluded from
Einit, Eine in same bin

* View current bins
against this loss

5+(i—6000) i > 4000
,otherwise
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Optimisation strategy

* Given some upper bin edge

* Optimum lower bin

1600
edge is minimum 1400
along line of const. 3 1200
upper bin (y = —x) < 1000
ii 800
S
— 600=
=

B RREEE REEES BREES REREA BRNEE BERE
///VEOOO 2250 2500 2750 3000 \3250 3500
Optimum width is loss ~ Low bin bound/Mev

minimum along this line

10—11

10—13

Upper edge fixed



First bin optimisation

1600 .
1400
* Naively, | applied the > 1200 107
same rules to the first =, o
bin. % 800 Lower bin edge 10
. E should be on this line | W
* Picks out the tangent £ *°7 10
of -1 gradient s I 10
2005 | 10-5
* ACtua”y Want tangent 0= | |2|0I0|0| |2|2I5|0Ix|2,|:510|0| |2|7I5|0| |3|0I0|0| |3|2I5I0| |3|500
of infinite gradient. Low bin bound/Mev

* | was aiming for this from
the start, but | didn’t account for silly coding!
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Results

* Can tune the parameters

* Target number of bins via the target count per bin.
* First bin occupancy

* Importance of missing events vs. having many

* Probably should relax the target count addition to
make the minimum less deep (do some calculus!)



Other considerations

* Missing events bias against high cross-section
interactions in energy slice version

* P(selected event) « [, . P(AE)P(interactin AE) a 1/0

* AE(E;;;;; bins) runs over possible energy range before
first bin boundary

* Likely less important for thin slice version of the
analysis (particles probably start interacting
instantly, can add an arbitrarily small initial bin)

* Thin slice method should be reassessed (but
perhaps post-thesis worthy result...)



Unfolding — total or per process

e Current binning has too many bms for nice
unfolding.

3200 = 3 10°

e Small bins to :
fit, large bins
to unfold?
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Unfolding — total or per process

* Assume detector has process s i R
invariant response. s Tl ]
SR : 10
* P(ErecolEtrue) J000-
* Unfolding inverts this to estimate: »o— oo rrer! T
Reco energy
P(EtruelEreco)

* This is performed on histograms. Either:
* Interacting yields produced post-fit

* Incident yields pre-fit (one could try constructing this via
moving fractions of histograms around)



Unfolding — total or per process

* We want to find Eirye; Which  gode S
is the true energy of the process, 5T .= & i
[ we want to measure 2 -

* As such we now have multiple =1

2000 2250 2500 2750 3000 3250

“causes”, dependent on the {g;} <
eco energy

* P(Etrye,il Eveco,j) to unfold post-classification

* Assume detector-independent: P(Et | Ereco)
P(Etrue,ilEreco,j)

f P(EtruelEreco) X
EtrueP(Etrue ‘ i) P(Ereco,j S i)



Unfolding — total or per process

Unfolded with no knowledge of processs2oo-

!

f P(EtruelEreco) X
Etrue P(Etrueli)P(Ereco,j € i)

~

P(E;,.|i) depends on o;.

This cannot be determined
from MC alone, since it is based
on the actual cross-section.
Factorising out means this
could be iteratively improved,
in principle.

103

3000

N R

....... 102

True energy
N N N
B (+)] 0]
o o o
o o o

10!

lgnore this
term!

10°
2000 2250 2500 2750 3000 3250

Probability that an event Reco energy
classified as j is actually process i

For unfolding pre-fitting, this is

summed over, so can be ignored:

P(Etrue,i |Ereco)

= Z P(Etrue,i |ET€C0,j)

For unfolding post-fitting, we
assume P(Ereco,j € i) = 0;j
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