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Introduction

* CNN-based networks reshaped event reconstruction f

2

Phys. Rev. D99, 092001 (2019)

GNN proved to

- naturally sparse

- N0 Image

pre-processing
- flexible structure

2024/07/19

Input Tensor

512X 512X 1

MicroBooNE

Simulation R N t Simulation
U-ResNe

‘ Concatenation of 512 x 512 tensors
convol“ﬁons ------------------------------------------------------------------------

512

Output Tensor

MicroBooNE

512X 512X 3

o .ﬁ“ .lntel'mediate High spatial
I

Concatenation of tensors
at all spatial dimensions
(32, 64, 128, 256)

7

512x 512 x 64

N

+ ResNet convolutions

N )

ol Intermediate
e - (most contracted)
16

16 x 16 x 1024

Repeat
1/2 down-sampling {=«ssNgrrrrrrnnnnnnnnnnnnns I3 x2 up-sampling

Repeat

+ ResNet convolutions

1000

———— -

Seamen -

500

x direction (mm)

-500

. ————

Tew A

. MU DI S S I L
-1000 : RFINEY { AR LR

Y

convolutions

.

Intermediate
512X 512X 64

PRIV TR

-

— ——

-3000 2000 ~1000 0
z direction (mm)

1000

2000

3000

y direction (mm)

1000

500

-500

-1000

80 . T

701
60}
50}
40+ n el ™

30 -I;‘-';"

20} &

Cell
l

10f

() 1 L

0 20 40

2016 JINST 11 P0O9001

Down-beampipe Spacepoint Distribution

-1000

x direction (mm)

500

1000

. {eij}
Embedding 3

and q
Fixed-radius NN edges

{(z,y,2)i}
{(cell features), }

Plane

60

Edge filter

80 100

be promising for track reconstruction at the LH

Longitudinal Spacepoint Distribution

{€ij}

pruned
edges

{(z,y,2):}
{(cell features), }

or neutrino physics

{éij €(0,1)}

GNN E— Connected ﬁ
classified components track
edges candidates

T{(.r.y.:),-}

TrackML
dataset

Preprocessing

Eur. Phys. J. C 81, 876 (2021)

2= Fermilab



NuGraph2 Paper Reference [arXiv:2403.11872]

PHYSICAL REVIEW D 110, 032008 (2024)

Graph neural network for neutrino physics event reconstruction

A. Aurisano® and V. Hewes
University of Cincinnati, Cincinnati, Ohio 45221, USA

G. Cerati® and J. Kowalkowski
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

C.S. Lee and W. Liao
Northwestern University, Evanston, Illinois 60208, USA

D. Grzenda® and K. Gumpula
Data Science Institute, University of Chicago, Chicago, Illinois 60637, USA

X. Zhang

Data Science Institute, University of Chicago, Chicago, Illinois 60637, USA
and University of California, Los Angeles, Los Angeles, California 90095, USA

® (Received 19 March 2024; accepted 14 June 2024; published 6 August 2024)

* Preprocessed training data set and trained model available on Zenodo
- https://zenodo.org/records/12169756
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https://zenodo.org/records/12169756

MicroBooNE Open Samples — Overview

* Inspired by FAIR principles (findable, accessible, interoperable, reusable data)

« Samples available under “cc-by” license. Template text for acknowledgment is provided.
- requesting resulting software products to be made available

* Two formats: targeting LArTPC and broader data & computer science communities

4

- art/ROOT is the same format as used by the collaboration.
 Files are stored on persistent dCache pool area and made accessible with xrootd

- HDF5 include a reduced subset of the art/ROOT information in a simplified format for usage by non-experts.
* Files stored on Zenodo, providing citable DOI (digital object identifier) & versioning.

* Extensive documentation and tutorials are also made public.
- Notebooks show how to access the data, demonstrate useful applications, define reference performance metrics

2024/06/27

Sample

Inclusive, NoWire
Inclusive, WithWire

Electron neutrino,
NoWire

Electron neutrino,
WithWire

DOI

10.5281/zen0do0.8370883

10.5281/zenodo.7262009

10.5281/zeno0do.7261921

10.5281/zen0do.7262140

HDF5

N events

753,467

24,332

89,339

19,940

N files

18
18

20

20

size

195 GB
44 GB

31 GB

39 GB

artroot

N
files

N events

1,046,139 24436

24,332 720

89,339 2151

19,940 540

size

6.4 TB
136 GB

761 GB

170 GB

arXiv:2309.15362
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https://www.go-fair.org/fair-principles/
https://creativecommons.org/licenses/by/4.0/
https://zenodo.org/
https://arxiv.org/abs/2309.15362

Graph Construction
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* Main inputs to the GNN are the Hits
- hits are Gaussian fits to waveforms
- features: wire, peak time, integral, RMS

- currently using Hits associated to the
neutrino interaction by Pandora

* Within each plane hits are connected
in a graph using Delaunay
triangulation

- fully connected graph
- both long and short distance edges
- connect across unresponsive wire regions

* Hit associations to 3D SpacePoints
create “nexus” connections across
graphs in each plane

- Currently defined by “Space Point Solver”
- SPs are not connected among themselves
- No input features for SPs

2= Fermilab



NuGraph2 Planar block Nexus block

Network architecture

» NuGraph2’s architecture is an iterative Y \
message-passing network. | {D“Odef/ [ P | [ bn
3 |
* Each message-passing iteration consists of ol ) éd,-
two phases: - g
_ . . ; { Nexus } mijT T ik
- Planar block: pass messages internally in each O : - \ :
plane. £] Tp,’ [ Z |
N 1 I J
- Nexus block: pass messages up to 3D nexus -3 Te,-- t ik
' : . Planar / (
nodes to share context information. = [ } . J
: l ap ! n
_ X,& \ by si—2 1
* Messages are based on a categorical N En L - [ )
embedding: — o i
E 0 E

- Each semantic category is provided with a xf ", sum Pooline Tue
separate set of embedded features, which are {Encode,J - | [ 0,
convolved independently. A : Jy "ean Pooling .

- Context information is exchanged between T | ............ e | Concatenation I
different particle types via a categorical cross- oo !
attention mechanism. " -

3¢ Fermilab
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NuGraph2

Decoders
x . binary score  classwise score\s x
 The last step at the end of the message passing | | Filter Isema”tic ]
Decoder Decoder
network are the decoder steps _ ) o
n!
* Paper describes two node classifications decoders: - [N }
1A : . : é | exus
- ngantlc. cIassﬁy each hit by .partllcle typ.e é T”"
- Filter: separate hits from neutrino interaction from background o '
: : - @
- Output both class-wise scores from the semantic decoder and = P'a“a'J
a binary score from the filter decoder L x%
- Same learned features are used as input to all decoders T L
- Different loss functions weighted based on per-task variance o
(arXiv:1705.07115) =i "
[Encoder}
A

* Work In progress on more decoders: neutrino flavor, a— | ............ o

vertex regression, object condensation
2= Fermilab
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https://arxiv.org/abs/1705.07115

Performance on Simulation: Filter

- 1.0

- 0.8

* Decoder trained to separate neutrino-
induced hits from background (noise or
cosmic-induced hits)

- Pandora slicing tends to prioritize completeness
over purity

signal

True label

noise

e Performance metrics:
- recall and precision: ~0.98

|
noise signal
Assigned label

2= Fermilab
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Performance on Simulation: Semantic _

* Decoder trained to classify each neutrino-induced
hit according to particle type

* Use five semantic categories:

- MIP: Minimum ionizing particles (muons, charged pions)
HIP: Highly ionizing particles (protons)

EM showers (primary electrons, photons)

* Performance metrics:
- recall and precision: ~0.95

- consistency between planes around 98%
e compared to ~70% without 3D nexus edges

9

Michel electrons

Diffuse activity (Compton scatters, neutrons)

2024/06/27

precision (purity)

recall (efficiency

True label

label
shower

True

diffuse

shower michel

HIP

MIP
I

diffuse

michel

HIP

MIP
|

|
MIP

|
MIP

- 1.0

0.031 0.058 0.021

- 0.8

o B .

0.0094 0.91 0.029
0.013 0.0033

0.012 0.0086 0.0065

HIP shower michel diffuse
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- 10

0.011 0.026 0.048

- 0.8

0.0013 0.015

HIP shower michel diffuse
Assigned label



Vertex Decoder

* We also developed a vertex decoder

regressing the 3D vertex position MicroBooNE Public Datasets
- Average 3D distance from truth: 1.0 1 j
* NG:6.2cm

0.8 -

* Pandora MCC9: 16.9 cm

- Already better on average, but need to improve
position pin-pointing

o
o

Quantile

o
»

* Work In progress: 02-
- Need to consider different approaches wrt pure — sraplhok
regression, as e.g. it does not constrain the vertex L
to hit positions in 2D (for CC interactions) P

- Tested different approaches for aggregating hit
information into event-level, now moving to

NuGraph3 (see next slide)

2% Fermilab
10 2024/07/19



Performance on Simulation: Event Display

* Filter successftully rejects hits that are not from the neutrino interaction,
Including cosmic tracks that are close to it
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time

Performance on Simulation: Event Display

» Semantic classification correctly classifies hits classes both in events with a
simple topology and also in higher multiplicity events.
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(c) Semantic truth, filtered by truth
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Integration in LArSoft

* NuGraph2 is integrated in the software framework for LArTPC experiments, LArSoft

* Model compiled with JIT and run using the libtorch C++ library.

- Integrated a package for Delaunay triangulation as well.
- Inference results are stored in the Event record for usage in downstream reconstruction and analysis.

* Inference module takes 0.75 s per event event on CPU, including graph construction
* Enables running in production workflows for LArTPC experiments!

 Currently exploring more flexible integration methods based on NVIDIA Triton inference
server (NuSonic: arXiv:2009.04509)

source:RootInput(read)
reco:nuslhits:NuSliceHitsProducer
reco:sps:SpacePointSolver
reco:NuGraph:NuGraphInference

[art]:TriggerResults:TriggerResultInserter
end_path:rootOutput:RootOutput
end_path:rootOutput:RootOutput(write)

13 2024/07/19

Al Inference Cluster

D g2

- Client CPU b4 9 (CPU| GPU)

g J JAEN . s/V@{"lq/ riton | Jjj' 2rence

g— A Of,(»

ClientCPU | .. . e
0.000725606  ©.00255304  0.019421  0.00131291  ©.00392539 S ' J e .. e
0.0411265  ©0.116099 0.55599 0.0900547  0.0817036 i Y Balancer
o L v

0.000110578  2.48479 85.3879  0.000217748  11.6239 T . —
4.7356e-05 0.74844 5.22709  8.83935e-05  1.14997 J . e riton Inference
1.4952e-05  2.38511e-05 6.7179e-05  2.1032e-05  9.54137e-06 o penve
2.915e-06  4.5257e-06  1.9485e-05  3.9445e-06  2.18303e-06 IS Client CPU o Inference Al Model
0.000867838  0.008697 0.0783238  0.00176224  0.0132931 N Server Repository
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https://arxiv.org/abs/2009.04509

Collaboration with|Y | | C

. D. Caratelli and M. Fang
NuGraph?2 for Track/Shower Separation S

e NuGraph2 “shower” label significantly improves the
Pandora classification out of the box
o ~95% accuracy on track identification
o ~20% improvement on shower classification

track track

Pandora label
NuGraph2 label

shower shower

shower track shower track

aCKlracke ape . aCKlracke ape 20
rackiracked’=®l Results on MicroBooNE Open Samples "=




Status of NuGraph applications

 MicroBooNE

- Ongoing integration in “MCC10” reconstruction workflow

* ICARUS

- First training completed! Thanks to S. Seo and interns R. Campos and E. Novello

* DUNE

- Several ongoing developments:
* Tau neutrino reconstruction
* Proton decay reconstruction
* Supernova pointing

2= Fermilab
15 2024/10/03



Network Explainability

» Explainability: Goal is to “open the black box” to build confidence and drive
developments.
- “Standard” tools for GNN interpretability (e.g. GNNEXxplainer) struggle with our network

M. Voetberg, https://indico.fnal.gov/event/66124/contributions/301004/attachments/182262/250229/exatrkx%20workshop%20-%20graph%20explanations-1.pdf

Track-like hits

Track Concept Probe

Testing network's ability to separate hip and
mips from other hits

Rapidly trained, seeing loss plateau as soon as
probe 2, converged by 3.

| "L > Supported by embedding space analysis

(See below for track separation)

2t Fermilab
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Injecting Physics Domain Knowledge: Augmented Features

* It turns out that GNNs are not aware of the structural role

of nodes
- They do not learn the graph structure

- GNNs do not distinguish graphs that are isomorphic according to
the Wesfteiler-Lehman test

* Adding the graph structural information (e.g. triangles,
circles) may help with classification

- This can be implemented by a structure-aware message passing
which contains structural information about the nodes

arxX1iv:2006.09252

* Add structural and non-local features to nodes improves o |
Indistinguishable molecules by the WL test and thus message passing NN

the network performance across the board:
- Features: Atime, Awire between 2 closest nodes,

distance to closest node Dmin, edge multiplicity Ne Drmin / I Q@
- ~5% (relative) improvement for the Michel category | @

Ne=

Work by V. Grizzi, H. Meidani (UIUC) ]
a¢ Fermilab

17 2024/06/27 Awire



NuGraph3

* A. Aurisano @ NPML.:

- https://indico.phys.ethz.ch/event/113/contributions/836/attachments/516/1110/aurisanoNuGraph3NPML.pdf

NuGraph3 Concept

* GNN-based particle flow reconstruction using NuGraph?2 as starting point
* Similar to Pandora, consider series of reconstruction stages

* Each stage connects elements from stage before to produce higher level objects
— Reconstruction chain expressible as a hierarchical graph with each level representing a reconstruction stage

* Avoid lossy serial steps by keeping many plausible reconstruction hypotheses and resolving
them simultaneously

— Expressible through fuzzy membership
¢ Nodes on level L-1 can be connected to more than one node on level L

* Hierarchical message passing iteratively improves the particle tree reconstruction by choosing a
reconstruction hypotheses using information from all stages simultaneously

o — o | | e
. o ﬂo . J
. ° | , lepton
5 1° system
- e
e )
.. . T
e , |
e T hadron
1 ° system

. Trajectory Tracksand Primary Collision
Physical Space  gegments Showers Particles System

27 June 2024 NPML 2024 - Adam Aurisano 9

18  2024/07/19

Hierarchical Message Passing

* NuGraph2 consisted of planar and
nexus nodes connected in a pseudo-

verex hierarchical fashion
Z * Nexus nodes primarily provided a way
Encoder Decoder for enforcing consistency between

Planar

semantic segmentation in each view

 Predicting event-level information was
only possible through an aggregation
* To test hierarchical message layer (LSTM, transformer, etc)
passing, added an event layer

with a single node

Vertex
Decoder

* Message passing with learned
edge weights between nexus
nodes and the event node allows
for lightweight and smart
aggregation

Semantic

Encoder— Decoder

Planar

as rermiiac



Clustering

@ CINGINNATI

- Utilize object condensation to cluster together
detector hits into particle instances (2002.03605).

- Materialize object condensation embedding inside
model to explicitly generate particle nodes.

0.6

- Currently performing this step during instance
decoder forward pass. 0.2

- Naive implementation is not well-optimized, so
currently optimizing for memory overhead,
speed and performance.

terms of Adjusted Rand Index (ARI)

- Ultimately plan to materialize instances inside
core message-passing loop, so particle instance
nodes can replace nexus nodes as the
iIntermediate step in the hierarchy.

NuGraph3 - v - 3rd October 2024

V Hewes, https://indico.fnal.gov/event/66124/contributions/301002/attachments/182891/251280/2024-10-03%20NuGraph3.pdf

19  2024/07/19

instance/adjusted-rand-train

- 4decoder-objcon-temps

trainer/global_step

10k 20k 30k 40k 50k

Quantify clustering performance in

O = random clustering
1 = perfect clustering

11

ce truth, semantic truth

True instance labels
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Multi-modal network — Adding PMT detector information

i, THE UNIVERSITY OF CHICAGO

Graph Architectures Results
» === o The blue graph e After incorporating the optical data, the model
f represents the original was trained successfully and yielded similar
A ;: . graph, which consists of results to the original one.
7 /X Wi connected nodes from e Although improvement were expected, this
177\ N Wires U, V, and Y. Each opens the door for experimenting with
| particle hit in the wire is different hyperparameters and graph
aggregated to a nexus connections to maximize performance.

node and finally an event.

e Graph A aggregates the
optical hits to one of the
32 PMTs which is further

/ 1 N —_— aggregated to one flash
7/ M W representing the
interaction.
: Wire \ N _ Figure 5. Comparing the Filter Recall (Efficiency). The
Figure 3. Graph Architecture B ° Graph B directly connects plot to the right is with the optical data, and the one to
the hits to the event node. the left is without it.

Potential usage for “interaction” decoder, e.g. for DUNE ND.

2= Fermilab
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Electron neutrino
ICARUS

Domain Adaptation

Particles and the overall event looks the same in different detectors.
Image credit: M. Toups

B A : RUN 5536 EVENT 1612. MARCH 22, 2016.

Source: M|croBooNE MicroBooNE
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:: “ Doma/hl Adaptation
tane o —:' ¥ ,' \\ | \
=2 / -~ -
—
()]
s
ttttttttttt ryostat East w
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Y L _ 7
-l ._]lgm_. A
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~' m o LA e Graph Layers
l PCWW rpcw@ TPCEW  TPCEE J /
Target: ICARUS

e Step one: correct classification of particles in both detectors.
e [uture: perform domain adaptation on other levels of the
hierarchy and types of tasks.

e Could be useful for combining DUNE near and far detectors?

A. Ciprijanovic, https://indico.fnal.gov/event/66124/contributions/301008/attachments/182275/250251/Exa.TrkX%20meeting%20-%20DA.pdf == Ferm“ab
21 2024/07/19
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https://indico.fnal.gov/event/66124/contributions/301008/attachments/182275/250251/Exa.TrkX%20meeting%20-%20DA.pdf

NuGraph Social Network
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