

Beam Diagnostic Instrumentation at MTA using Chromox-6 Scintillation Screen

Mukti R Jana

Accelerator Physics Center, Fermilab

APC Seminar, 16 May 2013

Outline of the Talk

- Introduction
- Beam Instrumentation
- Results of beam transmission through collimator
- Conclusions

Acknowledgement

M. Chung, B. Freemire, P. Hanlet, M. Leonova, A. Moretti, M. Palmer, T. Schwarz, A. Tollestrup, Y. Torun, K. Yonehara, Beam Division, Accelerator Division, Control Group and MCR Staff

Muon Ionization Cooling

HPRF Cavity Experiment

Past Experiment (without beam)

HPRF Cavity Experiment with 400 MeV proton beam

Requirements of HPRF Cavity Experiment

- Exact number of protons entering into HPRF cavity (Beam Transmission through collimator hole) is needed
- Current Transformer (Toroid) measured beam intensity does not work at B=3 T due to saturation of ferrite material
- MTA is flammable gas (H) hazard zone, due to safety reason within 15 feet no energized (active) beam monitor device can be used

We have developed a passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera

This is the main objective of this talk

Mukti R Jana APC Seminar 16 May 2013

Experimental Set Up of HPRF Beam Test

1: Beam pipe, 2: Linac Toroid (LT), 3: Multi-wire, 3(a): device (96 wires) inside flange, 4: Titanium window near end of beam pipe, 5: Chromox-6 scintillation screen, 6: First beam collimator (through hole diameter of 20 mm), 7: Up Stream (US) toroid, 8: Second beam collimator (through hole diameter of 4 mm), 9: Down Stream (DS) toroid, 10: HPRF cavity, 11: Beam absorber, 12: CCD camera, 13: sample CCD image on PC. Mukti R Jana APC Seminar 16 May 2013 8

Experimental Set Up at MTA

Dimensions (mm) of Expt. Set up

Photograph of Expt. Set up at MTA

Mukti R Jana APC Seminar 16 May 2013

MTA Beam Parameters

Beam Parameters	Value
Energy	400 MeV
Average beam current	36 mA
Species	H^{-}/H^{+}
Macro bunch length	10 µs
Micro bunch length	5 ns (200 MHz)
No. of Micro Bunch (10µs/5ns)	2000
Particle per Macro Bunch (Particles Per Pulse)	$\sim 2 \times 10^{12}$
Particle per Micro Bunch (2×10 ¹² /2000)	$\sim 1 \times 10^{9}$
Average charge	240 nC
Repetition rate	1 pulse per min
Emittance, ε _{95%} (Simulated)	10 mm-mrad

Mukti R Jana APC Seminar 16 May 2013

History of Scintillator

Choice of Scintillator

- *Conversion efficiency (Light Yield)*: Conversion of kinetic energy of the charged particles into detectable light with a high scintillation efficiency which is defined as the average number of photoelectrons produced per eV input
- *Emission Spectra*: Emission light is matched to the optical system of the CCD camera in visible wave length range (450 $nm < \lambda < 700 nm$)
- *Luminescence decay time*: Fast decay time is required for the observation of a variation of beam size
- *Linearity*: This means light output is proportional to the incident particle flux over as wide a range as possible.
- *High radiation hardness to prevent permanent damage*
- Good mechanical properties

Commonly used Inorganic Scintillators

Material	Activator	Wavelength (nm)	Decay time	Light Yield (Photons/MeV)
CsI	Tl	550	1 µs	6.5×10^{4}
Al ₂ O ₃ :Cr ⁺ (Chromox-6)	0.5% Cr	700	3.4 - 100 ms	4.94×10^{4}
Glass	Се	400	0.1 µs	5×10^{3}
Yttarium Aluminium Garnet (YAG) Y ₃ Al ₅ O ₁₂	Се	530	0.3 µs	1.7×104

We have selected Chromox-6 scintillator

Properties of Chromox-6 Scintillator

Parameters	Value
Material: Al ₂ O ₃	99.4%
Cr ₂ O ₃	0.5%
Color	Pink
Wavelength of luminescent light (nm) (when impacted by	691 - 694
electron or protons)	
Bulk density (g/cc)	3.85
Grain size (µm)	10 - 15
Specific heat, C _p (J/kg K) @ 20 °C	900
Thermal conductivity (W/m K) @ 100 °C	30
Melting point (°C)	2000
Max. Operating Temperature (°C)	1600
Resistivity (Ω-cm) @ 400 °C	10 ¹²
Attenuation co-efficient , α (mm ⁻¹) @ 694 nm	0.8 ± 0.1
Starting Sensitivity (viewed by CCD camera)	$10^{7} - 10^{8}$ protons
Ionization loss (for ultra-relativistic protons) (MeV/mm)	~ 1

Sensitivity and Emission spectra of various detectors and scintillation screen

We have selected PixeLINK CCD camera (Model: PL-B955, USB 2.0) from Edmund Optics, USA

Multi-wires Detector

Parameters	Value
Diameter of the wire	50 μm
Spacing	2 mm
Length of the wires	120.65 mm
Number of wires in:	
Horizontal Plane	48
Vertical Plane	48
Material	BeCu
Tension	0.78 N
Signal wires	Kapton isolated
Insulation (frame)	Alumina 96
Vacuum performance	1.33 × 10 ⁻⁹ mbar
Maximum power	$0.34 \mu\text{W/mm}^2$
deposited on a wire	

Acknowledgement

Fermilab Control Group

Results

• Multi-wires (High Intensity)

Results Cont...

CCD Image

High Intensity Beam

- Beam Center
- Beam size
- Beam Transmission

Low Intensity Beam

• Beam Transmission

Results Cont...

Beam Transmission Through Collimator Hole

Mukti R Jana APC Seminar 16 May 2013

Results (High Intensity beam and B=0 T)

Results Cont.. (High Intensity beam and B=3 T)

UP and DS toroids stop working at B=3 T

Beam Intensity estimated from CCD image at B=3 T

Beam Transmission efficiency at B=3 T

Results Conti.. (Low Intensity beam and B=0 T)

Results Conti.. (Low Intensity beam and B=3 T) UP and DS toroids stop working at B=3 T

Conclusions

- We have developed passive beam diagnostic instrumentation using a combination of a Chromox-6 scintillation screen and CCD camera for calculation of beam transmission efficiency through collimator. Results are consistent with toroid measurement.
- The technique works fine even in B=3 T where no other beam diagnostic instrumentation work.
- This technique is useful to MTA beam operator to tune the beam at MCR
- ➤ Screen is placed in air
- CCD camera is kept far away from screen and viewed with telephoto lens
- > Beam image does not change with B=3 T

• A simulation calculation using G4beamline with a proton beam of $\sigma_x = 1.67$ mm and $\sigma_y = 3.88$ mm shows that the transmission efficiency through the 4 mm diameter collimator is 47%. Using these values of σ_x and σ_y in a Mathematica program developed for CCD image analysis we obtain a transmission efficiency of 55%. This bench mark calculation shows simulation and measurements are in reasonable agreement

Thank you very much for your kind Attention

Mukti R Jana APC Seminar 16 May 2013