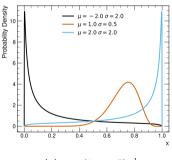
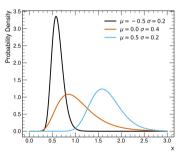

Near to Far Model Update

Alex Wilkinson

29 November 2024

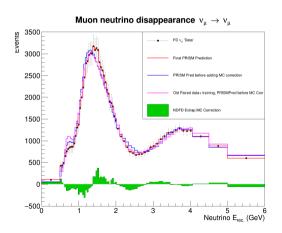
The Model





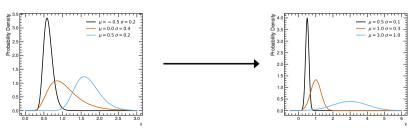
Gaussian Mixture

- ▶ Predicted conditional probability distributions are a weighted sum of Gaussian
 - → Currently using 64 Gaussians
- ► The Gaussians are transformed using a change of variables so that they are more appropriate for the FD variables

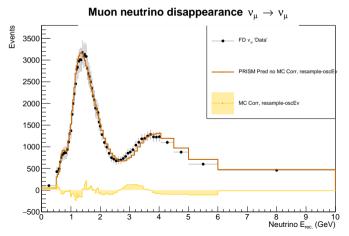


(a)
$$y = (1 + e^{-x})^{-1}$$
 (b) $y = e^x$

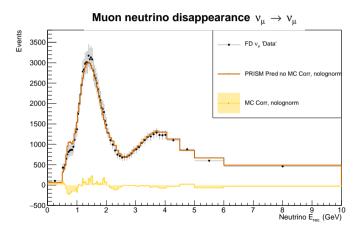
Original PRISM Implementation


► Trained with muon resimulated paired data:

Attempts to Improve


- We tried a few things to have the model do a more accurate detector effects correction for the PRISM pred
- ► Most of these focused on resampling the data during training
 - → Dataset is made with the ND beam flux
 - → Can resample to other fluxes during training by selecting the training data with a true neutrino energy closest to a true neutrino energy randomly sampled from a histogram
- Also considered removing the log-normal change of variables for the FD reco energy Gaussian mixtures:

Resample to Oscillated Flux


Resample with NuFIT 4 oscillated flux histogram i.e. the target of the linear combination:

Remove the log-norm Transformation

Gaussian mixture instead of log-normal mixture:

Bad Attempts and Next Attempts

- ► The following results in bad PRISM preds:
 - → Resample to uniform true neutrino energy
 - ightarrow Resample to the combined true neutrino energy of all ND detector positions
 - ightarrow Resample to FD oscillated **reconstructed** neutrino energy
- Both the no log-norm and the oscillated flux resample are helpful
- Currently making new CAFS for:
 - ightarrow No log-norm again (have made some minor model improvements since the last one)
 - ightarrow No log-norm and resampling to oscillated flux