Report from STT Working Group

S. Di Falco

INFN Pisa, Italy

R. Petti

University of South Carolina, Columbia SC, USA IIT Guwahati, India

G. Sirri

INFN Bologna, Italy

SAND meeting 3 November 2024

Focus on progress since report at 10/2024 SAND meeting:

- ✦ Tests of wire spacers at CERN;
- ✦ Tests of crimping pins;
- ✦ Testbeam exposures at SPS and PS at CERN;
- ✦ Analysis of testbeam data;
- \triangleleft Mechanical analysis and assembly of full-scale STT modules;
- ✦ Thermal analysis of STT super-module with VMM3a readout;
- ✦ Initial STT configuration and operating conditions;
- ✦ Performance of initial STT configuration.

Material presented during WG meetings (Thursdays, 8:00am Central Time / US) available on Indico: https://indico.fnal.gov/category/1402/

TESTS OF SPACER SAMPLES AT CERN

K. Buchanan (CERN)

Internal minimum diameter

Final samples of STT spacer produced by injection molding tested at CERN

External maximal diameter

Acceptance criteria: External diameter (**nominal 4.88+0.0-0.03 mm**)

Average diameter = 4.873 **± 0.01**2 **mm therefore acceptable**

Roberto Petti anno 1992 - Septembre 2008 - Septembre 2008 - Septembre 2008 - Septembre 2008 - USC - US

Roughness measurement

TESTS OF CRIMPING PINS

S. Romakhov (INP)

- ✦ *Setup for testing crimping pins based on machined plexiglass frame;*
- ✦ *Use 20 m wire from LUMA and pneumatic crimping tool developed by ATLAS TRT for mass production; μ*
- ✦ *Better reproducibility and long term stability obtained with pneumatic crimping tool compared to manual one.*

SPS AND PS TESTBEAM EXPOSURES K. Kuznetsova (UF)

7

- **← Testbeam exposure in H4 SPS at CERN (18 Sep. 02 Oct. 2024):**
	- *Straw tracker prototype with same geometry and straws as STT (5mm diameter, 20 μm wire);*
	- 4 MicroMega external trackers $(3X + IY)$ with pitch $250 \mu m$;
	- • *Coincidence of 2 scintillators for time reference;*
	- Comcluence of 2 scimilitions for time reference,
• New high precision (~6 μm) AZALEA silicon tracker (6 planes with 18.4 μm pitch).

◆ Runs with and without *B* field with two different readouts: VMM3a (Mu2e board) and ASD (ATLAS)

 \implies *Time & charge measurements vs. internal gas pressure, thresholds, and B*

✦ *Testbeam exposure in T9 PS at CERN (2 Oct. - 9 Oct. 2024):*

- *Straw tracker prototype with same geometry and straws as STT (5mm diameter, 20 μm wire);*
- • *Coincidence of 2 scintillators for time reference;*
- New high precision (~6 μm) AZALEA silicon tracker (6 planes with 18.4 μm pitch).
- \blacklozenge High (5 and 15 GeV) and low (\leq 2 GeV) energy runs with VMM3a, ASD, and custom readout

 \implies Time & charge measurements for particle identification (e, π , μ , p) and tracking

ANALYSIS OF TESTBEAM DATA

S. Pincha (IIT Guwahati)

9

◆ *Tiger readout with 60 ns peaking time and 12 mV/fC gain (signal saturation);*

⇒ Upper limit on hit resolution with non-optimal readout already satisfies STT requirement **←** Preliminary single hit resolution ~200 $μm$, ongoing analysis to understand noise and uniformity

MECHANICAL ANALYSIS OF FULL-SCALE MODULES

S. Mameli (INFN Pisa)

10

Total deformations are the sum at both straw ends.
Long straws are 1° and 2° layer. Short straws are Total deformations are the sum at both straw ends.
Long straws are 1° and 2°layer. Short straws are 3° and 4° layer

- **★** Assembly procedure from mechanical analysis of full-scale module 4m×3.3m; $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ force on $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$ (1832 kg)
- ✦ *Spring (rope) behavior of straws & wires: straw assembly pressure of 2.5 bar relative gives pre-tension load;* stated for the total from mechanical dualysis of fun seale module this.com,
Spring (rope) behavior of straws & wires: straw assembly pressure of 2.5 bar relative gives pre-tension load;
- ✦ *Assembly pressure tuned to achieve force cancellation on frame in operating condition of 1 bar relative.* Spring (10pc) centuries of strand a miles: strand assembly press T_{source} for $\frac{1}{2}$ for $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\int f(t) dt$
- \implies The C-fiber frame does not present risks regarding mechanical strength

✦ *Study the effect of the straw relaxation, temperature, and humidity over a period of 20 years of data taking;*

✦ *Use the creep rate of straws measured at Duke University (Seog) to model straw relaxation vs. time;*

✦ *Mechanical analysis of full-scale modules vs. time assuming straws stored for 100 days before assembly.*

 \implies Compensation of straw relaxation by natural spring from internal overpressure

11

Final drawings of the full-scale $4m \times 3.3m$ STT module (prototype in production)

12

THERMAL ANALYSIS OF SUPER-MODULE

O. Kemularia (GTU)

13

◆ *Thermal analysis of full-scale super-module assembly: 10 STT modules with 24×5 FE boards;* ✦ *Self-cooling design with expected total power dissipation about 0.80 W per board (VMM3a 0.60 W)*

 \implies Study cooling performance with initial VMM3a readout and realistic geometry

Maximal temperatures on VMM3a chip well below 400C allow extended board lifetime

STT CONFIGURATION FOR INITIAL DATA TAKING

- ✦ Use STT configuration with 54 modules as default for the initial SAND data taking \implies Simulation studies indicate that initial STT is consistent with SAND physics goals
- ✦ Backup readout with VMM3a in direct output mode with "external" ADC (upgradeable) \implies Readily available & tested with STT prototypes
- ✦ Reduction of project risks with initial STT without compromising physics potential \implies Keeping same construction schedule as before provides substantial contingency
- ✦ Define STT upgrade path after initial data taking with minimal detector modifications \implies Addition of the 32 missing modules and replacement of integrated readout

INITIAL STT CONFIGURATION

Initial STT configuration with backup integrated VMM3a readout: 39 CH2 modules with target+radiator (37.718 mm) 8 C (graphite) modules (32 mm) 7 tracking module XXYY (28 mm) Total 54 modules, 8+1 super-modules

Summary of key numbers for the initial and complete STT configurations

17

CORE COSTS FOR THE INITIAL STT

Average cost per channel: \$19

18

STT COST CONTINGENCY

MC simulation of 10,000 projects with cost variations based on STT risk register De?ne cost contingency covering 95% of simulated projects

CORE COSTS FOR THE STT UPGRADE

(Without ASIC design and mask: \$ 725,750) **Average cost per channel: \$19** (\$9)

OPERATING CONDITIONS: CREEP RATE

✦ *Creep rate of straws from the CERN prototype (produced by GTU) measured at Duke University (Seog);*

 \blacklozenge *Fit logarithmic function* $p_0 + p_1 \log_{10}(t)$ *with t in days: normalized slope* $p_1 = 0.06$

✦ *Expected maximal variation in straw elongation for 3.75m straws after 20 years at operating 2 bar:*

$$
\left[1 - \frac{1 - 0.06 \log_{10}(7300)}{1 - 0.06 \log_{10}(100)}\right] 2.8 \text{ mm} = 0.36 \text{ mm}
$$

 \implies Operating conditions should correspond to variations in straw elongation \lesssim 0.36 mm

OPERATING CONDITIONS: RELATIVE HUMIDITY

◆ Humidity dependence of straws from the CERN prototype measured at Duke University (Seog); Humidity coefficient = !" = # #.&'(#)*+ ,.- = 0.8 x10⁷⁸ 9:/9:/%=> ✦ *Linear fit with respect to relative humidity gives a humidity coefficient* 0.8 × 10−⁶ *cm*/*cm*/ % *RH* ω ongation for 3.75ν This is somewhat higher than 0.6 x10⁷⁸ 9:/9:/%=> from Mylar property table ✦ *Expected maximal variation in straw elongation for 3.75m straws and a variation of 50% RH:* 0.8 × 10−⁵ *mm*/*cm*/ % *RH* × 375 *cm* × 50 % *RH* = 0.15 *mm*

and to return humanity wen below to \implies Variations of straw length due to relative humidity well below expected creep rate

OPERATING CONDITIONS: TEMPERATURE

Temperature dependence of straws from CTE coefficient of base Mylar film: 17×10^{-3} mm/m/⁰C \times 3.75 m = 0.064 mm/⁰C

 \implies Control temperature to $\pm 5^0C$ to keep variations below 20y creep rate $\lesssim 0.36$ mm

- Straw elongations from both temperature and humidity were found (Mu2e) to be reversible once temperature and humdity return to nominal
- ✦ Internal overpressure (straws operated at 2 bar absolute) provides natural spring mechanism compensating automatically for variations of straw elongation within elastic limit
- ✦ Thermal analysis of super-modules indicates that a variaton of the ambient temperature within $5^{0}C$ still compatible with maximal chip temperatures $\sim 40^{0}C$

PERFORMANCE OF INITIAL STT

N. Talukdar (USC)

24

- ✦ *Full track reconstruction based on Kalman filter using drift circles implemented;*
- ✦ *Minimal cuts applied: true vertex in FV (20cm) &* ≥ 4 *hits in the YZ bending plane.*

 μ from inclusive ν_{μ} CC FHC

Initial STT has improved momentum and angular resolution

Backup slides

CORE COSTS AND RISK REGISTER

Comprehensive list of components based on STT prototypes & advanced design stage:

- Quotes from multiple vendors obtained for each item;
- Selection of main supplier $(+)$ backup one) for each item;
- Qualification of components with sample tests & prototypes.

 \implies Realistic estimate of STT core costs

✦ Pre-production procurements from selected vendors for Pisa & full-scale STT prototypes

✦ Identified 22 STT risks including threats, opportunities, and uncertainties:

- Technical, management, and external risks following Fermilab Risk Breakdown Structure (RBS);
- Defined mitigations and responses for each STT risk;
- Initial implementation into standard format of Fermilab risk register with corresponding metadata.
- \implies Preliminary evaluation of probability and project impact for each STT risk

STRAW PRODUCTION & MODULE ASSEMBLY

- ✦ Fabrication of STT includes two main functional blocks:
	- Production and test of straws with the ultrasonic welding technology;
	- Assembly and test of complete STT modules from components (straws, frame, wires, etc.).

 \implies Fuctionally independent could operate from same or different sites

- ◆ Basic Straw Production (SP) unit:
	- Straw production line 5m long equipped with ultrasonic welding (UL) technology;
	- Automatization of welding process and SP line as in existing lines at GTU & JINR;
	- Required personpower including quality tests (in parallel to SP): 4 people for single line (regardless of length), 6 people for double line;
	- Expected average production rate: 50 straws/day.

 \implies Minimal number of SP units required: 3 (available at GTU+JINR)

- ◆ Basic Module Assembly (MA) unit:
	- Mounting table and tooling required to assemble full scale (4m) STT modules;
	- Need ceiling $>5m$ to allow modules in vertical position for stycast gluing and wiring;
	- Required personpower including quality tests (in parallel to MA): 7 people;
	- Expected average production time: \sim 2.5 months / module.

 \implies Minimal number of MA units required: 2-3 (single production site)

MA tooling for the assembly of 4m modules developed for the COMPASS straw tracker

glue spacers on 4m long wires before *MA tooling developed for COMPASS to insertion into straws*

MA tooling for external support of full-scale STT frames during the wiring and assembly process based on cross-bracing with C-fiber square tubes

CORE COSTS FOR THE COMPLETE STT

(Without ASIC design and mask: \$ 3,107,779) **Average cost per channel: \$18** (\$14)

STT COST CONTINGENCY

MC simulation of 10,000 projects with cost variations based on STT risk register Define cost contingency covering 95% of simulated projects