

1

FERMILAB-PUB-24-0872-STUDENT
Training NuGraph2 for ICARUS

Eric Novello
Supervisor: Sunny Seo, Co-Supervisor: Giuseppe Cerati

December 2, 2024
Abstract
 This paper describes the process of training NuGraph2, a Graphical Neural
Network for particle identification and event reconstruction, on simulated ICARUS data
and initial performance and results of the training are discussed. This began with an
investigation into filtering ICARUS spacepoint data, where it was found that filtering
spacepoints by both their 𝜒2 value and by the number of associated hits was most
effective. NuGraph2 was repeatedly trained on three event samples, which were used
for optimizing hyperparameters and for debugging preprocessing and training scripts as
well as fixing unexpected crashes that rarely happened during training. This work will
make a new branch on the NuGraph2 GitHub repository for ICARUS.

1. ICARUS Experiment

ICARUS is the largest of the three Liquid Argon Time Projection Chamber
(LArTPC) experiments in the Short-Baseline Neutrino program (SBN) at Fermi National
Accelerator Laboratory (Fermilab) that aims to confirm or refute the existence of a fourth
generation of neutrino oscillation, a possible explanation for the excess of events in the
low energy region seen in MiniBooNE [1].

The SBN program uses the Booster Neutrino Beam (BNB), which provides it with
neutrinos produced from 8 GeV protons on target. ICARUS is the farthest of the detectors,
located 600 m along the BNB beamline compared to MicroBooNE at 470 m and the Short
Baseline Near Detector (SBND) at 110 m [2].

ICARUS contains a total of 760 tons of cryogenically cooled ultra-pure liquid argon
split between 2 identical cryostats as shown in Figure 1. In each cryostat, there are two
LArTPCs divided by a cathode parallel to the BNB. On the outer edges of each LArTPC
there are three anode wire planes. The first two are induction wire planes angled at 0 and
60 degrees from horizontal and the third is a collection wire plane angled at -60 degrees
from horizontal. The angles of the three wire planes give each of them a unique 2D
representation of the detector. The cathode and anode have an electric potential...which
accelerates ionized electrons to anode, where the ionized electrons are produced by
interaction of charged particles originating from the initial neutrino interactions or cosmic
ray [2][3].

Gaussian pulses on LArTPC wires from ionizing electrons form hits. Spacepoints
are formed by grouping hits from across wire planes, where each spacepoint corresponds
to three hits, one from each wire plane. Spacepoints are cartesian representations of the
locations of the hits on the wires.

2

FIG. 1: The geometry of the ICARUS detector

2. NuGraph2 Neural Network
NuGraph2 is a machine learning Graph Neural Network (GNN) developed by the

ExaTrkX collaboration for particle reconstruction in neutrino physics [4]. It has been
implemented in MicroBooNE and will be implemented in ICARUS. Hits form planar nodes
which have input features in the form of the hit’s wire index, time, and the integral and
Root Mean Square (RMS) width of its Gaussian pulse. Nexus nodes are made from
spacepoints and have no input features. Planar nodes within each wire plane are
connected to each other and to nexus nodes via graph edges created by a Delauney
triangulation algorithm.

3. Spacepoint Filtering Techniques

The spacepoints from any event are cluttered with noise that obscure the ionization
tracks and showers (signal feature) of the events. To address this, spacepoint filtering is
adopted and two filtering techniques were investigated.

The first filtering technique tried was filtering spacepoints by their 𝜒2 value, which
was already included in the spacepoint data produced by the HDF5Maker module of
LArSoft [5]. A variety of 𝜒2 threshold values were investigated with lower threshold values
eliminating more noise, however lowering the threshold value too much, such as 𝜒2 < 0.1,
resulted with removing spacepoints from the ionization tracks and showers without
noticeable improvement in filtering noise compared to more modest value of 𝜒2 filters,
suggesting there was a better technique.

The second technique investigated was filtering by the number of associated hits
used to make spacepoints where there should be one hit from each of the three wire
planes. Many spacepoints were only associated with two hits. Removing these

3

spacepoints eliminated far more noise than sharp 𝜒2 filters without loss of data in the
ionization tracks or showers. Because of these findings, filtering spacepoints by number
of associated hits was added to the HDF5Maker module of LArSoft by an expert.

Using both filtering techniques together was also investigated with a variety of
moderate 𝜒2 thresholds (0.5-1.5). Figure 2 below shows a comparison of the various
filtering techniques. This was not added to the HDF5Maker module of LArSoft as it
showed little improvement over filtering by associated hits, however 𝜒2 filtering was added
to a later stage of the NuGraph2 workflow.

4

FIG. 2: 2D projection of spacepoints without filtering (top), with a 𝜒2 filtering of 0.5 (middle-top), with
associated hit filtering (middle-bottom), with the two filtering techniques combined (bottom).

4. Event Samples

Three samples of simulated neutrino (Multi-Particle Vertex) and cosmic muon
background (Multi-Particle Rain) events were used to train NuGraph2 for ICARUS. They
had 112 runs (~3,500 events), 1183 runs (~31,000 events), and 10363 runs (~272,000
events) respectively. These will be referred to as the small, medium, and large samples
for the rest of this paper.

Within a sample, all runs were made separately as their own files and had their run
number equal to 1. A python script was used to give each run a unique run number.

Once the run numbers were modified, the run files are concatenated into one file.
If the run numbers weren’t made unique, runs would overwrite each other in the
concatenated file

5. Preprocessing

Preprocessing turns the samples into the input for NuGraph2 training by assigning
semantic labels to hits and creates planar and nexus nodes, which are made from hits
and spacepoints respectively. Graph edges connecting the planar nodes to one another
and to nexus nodes are then created via a Delauney triangulation algorithm. Events are
then split into training, validation, and testing samples. Regardless of the entire sample
size, 90% of events are put into training, 5% in validation, and 5% in testing samples.

Before the graph nodes and edges are made, a 𝜒2 cut of 0.5 is applied to the
spacepoints, empty events are removed, and hits with too many semantic labels are
removed. These were applied here instead of in LArSoft for efficiency and ease of
implementation as making new samples wasn’t required for testing different filter
combinations.

It is of note that hits with too many semantic labels were not present in the small
and medium samples and were exceptionally rare in the large sample. Furthermore,
empty events were not present in the small sample and rarely seen in the medium sample
after the 𝜒2 filter was added.

5

Ideally, the 𝜒2 filter and removal of empty events would be applied in LArSoft as it
would allow for smaller file sizes and possibly make run-concatenation and preprocessing
faster.

6. Training NuGraph2

When training begins, events are shuffled into equal sized batches, which are
operated on in a random order. When NuGraph2 training finishes operating on a batch, it
compares the output from the training to the truth and adjusts its machine learning
parameters to minimize the difference between the output and truth. These updated
parameters are used when operating on the next batch. Once all batches have been
operated on, the process repeats for a set number of epochs. The batch order is different
for each epoch to reduce bias towards any batch.

6.1 Hyperparameter Optimization

There are several parameters that affect the training results, duration, and
resource requirements. These parameters are the learning-rate, number of epochs, and
the batch-size. Investigations into hyperparameter optimizations discussed in this paper
were only done on the small and medium samples as investigations with the large sample
would have been inefficient and time consuming.

6.1.1 Learning-rate
 NuGraph2 has a default learning-rate of 0.001, however loss plots from trainings
on the medium sample with 160 epochs showed signs of possible undertraining, which
was evident from the loss plot not saturating. This led to a short investigation for an
optimized learning-rate on the medium sample. Training with learning-rate 0.002, 0.0015,
and 0.00125 showed signs of overtraining. Eventually, training with learning-rate 0.00115
was done, which showed no signs of overtraining or undertraining, making it the optimized
learning-rate, at least for the medium sample. The optimized learning-rate can change
depending on the sample size. Figure 3 (below) shows the loss plots from the learning-
rate investigation. The large sample was trained with learning-rate 0.001 as the learning-
rate investigation wasn’t finished at the time and there were concerns about time
constraints.

6

FIG. 3: Loss plots as a function of batches operated on from training the medium sample with learning-rate
0.001 (top-left), 0.0015 (top-right), 0.00125 (bottom-left), 0.00115 (bottom-right)

Table. 1: Tables comparing the values of precision and recall filter and precision and recall semantic for the
train, validation, and test categories with different learning rates on the medium sample.

7

As shown in table 1 (above), training with learning-rate 0.00125 shows clear signs
of overtraining as both the precision semantic and recall semantic values for the training
sample is much higher than they are for the validation and test samples. The training with
learning-rate 0.00115 is the most consistent between the training, validation, and test
samples, further showing that it is the optimal learning-rate.
6.1.2 Epochs

Training iterates over many epochs and Nugraph2 uses 80 epochs by default.
NuGrpah2 was trained many times using 160 epochs for both the small and medium
samples. Doubling the epochs from 80 to 160 marginally improved all training results at
the cost of extending the training duration by roughly 50%. The improvements were far
weaker in the medium sample than in the small sample as statistical uncertainties were
less present.

The large sample was trained with 80 epochs as improvements from having more
epochs would be insignificant compared to those from the medium sample and training it
with 80 epochs roughly takes 14 days, but this depends on the computer resources during
training. For comparison, training the small and medium samples with 80 epochs takes
1.5 and 16 hours respectively.

6.1.3 Batch-size

The final hyperparameter is the batch-size, which defaults to 64 events per batch.
Changing the batch-size doesn’t show any noticeable differences in training performance,
however it greatly influences the training time and resource requirements. As the batch-
size increases, the training duration decreases, and the resource requirements increases.
Training with larger batch-sizes wasn’t investigated as using the default batch-size is
rather resource intensive (~40 GB GPU). Smaller batch-sizes were only used for
debugging purposes and to stay within resource availability when training the small
sample before filters were added to preprocessing.

7. Results

8

At the end of each epoch, four confusion matrices are produced: recall filter,
precision filter, recall semantic, and precision semantic. Recall and precision are defined
as [4]:

Where TP is true positives, FP is false positives, and FN is false negatives. Recall

is more commonly referred to as efficiency and precision is more commonly referred to
as purity. Filter matrices show how well signal and noise are distinguished from one
another while semantic matrices show how well particles of different semantic classes
are distinguished from one another. The semantic classes are minimum ionizing particle
(MIP), highly ionizing particle (HIP), shower, Michel electron, and diffuse.

FIG. 4: Recall filter (Left) and Precision Filter (Right) confusion matrices from the large sample

 As shown in Figure 4 (above), the filter matrices show reasonable results with 98
percent of the hits identified as signal truly being signal in both matrices and 90 and 89
percent of hits identified as noise truly being noise in the recall and precision filter matrices
respectively There is some minor room for improvement with how NuGraph2 identifies
noise, but overall, the results are promising.

9

FIG. 5: Recall Semantic (Left) and Precision Semantic (Right) confusion matrices from the large sample

While the semantic matrices overall show promising results in Figure 5 (above), there
is much to be desired with the Michel electron and diffuse categories as they should
ideally have similar results to the other categories. One of the main reasons for the
undesired performances would be because these categories contain far fewer hits than
the other categories.

8. Next Steps

The results of the large sample will be used to further search for optimized
hyperparameters, which will be the parameters where the Michel electron and diffuse
categories have comparable results to the other categories. NuGraph2 will then be trained
with these parameters before being integrated into ICARUS Pandora reconstruction.

Acknowledgements
This manuscript has been authored by Fermi Research Alliance, LLC under Contract No.
DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of
High Energy Physics.
This work was supported in part by the U.S. Department of Energy, Office of Science,
Office of Workforce Development for Teachers and Scientists (WDTS) under the Science
Undergraduate Laboratory Internships Program (SULI).

References
[1] A. A. Aguilar-Arevalo et al (MiniBooNE Collaboration) "Significant Excess of
Electronlike Events in the MiniBooNE Short-Baseline Neutrino Experiment", Phys. Rev.
Lett. 121, 221801 (2018); arXiv: 1805.12028

10

[2] M. Antonello et al, (2014), A Proposal for a Three Detector Short-Baseline Neutrino
Oscillation Program in the Fermilab Booster Neutrino Beam,
https://arxiv.org/pdf/1503.01520
[3] P. Abratenko et al, (2023), ICARUS at the Fermilab Short-Baseline Neutrino Program
- Initial Operation, https://arxiv.org/pdf/2301.08634
[4] A. Aurisano, V. Hewes, G. Cerati, et al., "NuGraph2: A Graph Neural Network for
Neutrino Physics Event Reconstruction", Phys. Rev. D 110 (2024) 3, 032008;
arXiv:2403.11872
[5] E.L. Snider and G. Petrillo (2017) J. Phys.: Conf. Ser. 898 042057, LArSoft: toolkit for
simulation, reconstruction and analysis of liquid argon TPC neutrino detectors,
https://iopscience.iop.org/article/10.1088/1742-6596/898/4/042057/pdf

