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Abstract 
 This paper describes the process of training NuGraph2, a Graphical Neural 
Network for particle identification and event reconstruction, on simulated ICARUS data 
and initial performance and results of the training are discussed. This began with an 
investigation into filtering ICARUS spacepoint data, where it was found that filtering 
spacepoints by both their 𝜒2 value and by the number of associated hits was most 
effective. NuGraph2 was repeatedly trained on three event samples, which were used 
for optimizing hyperparameters and for debugging preprocessing and training scripts as 
well as fixing unexpected crashes that rarely happened during training. This work will 
make a new branch on the NuGraph2 GitHub repository for ICARUS.  
 
1. ICARUS Experiment 

ICARUS is the largest of the three Liquid Argon Time Projection Chamber 
(LArTPC) experiments in the Short-Baseline Neutrino program (SBN) at Fermi National 
Accelerator Laboratory (Fermilab) that aims to confirm or refute the existence of a fourth 
generation of neutrino oscillation, a possible explanation for the excess of events in the 
low energy region seen in MiniBooNE [1]. 

The SBN program uses the Booster Neutrino Beam (BNB), which provides it with 
neutrinos produced from 8 GeV protons on target. ICARUS is the farthest of the detectors, 
located 600 m along the BNB beamline compared to MicroBooNE at 470 m and the Short 
Baseline Near Detector (SBND) at 110 m [2]. 

ICARUS contains a total of 760 tons of cryogenically cooled ultra-pure liquid argon 
split between 2 identical cryostats as shown in Figure 1. In each cryostat, there are two 
LArTPCs divided by a cathode parallel to the BNB. On the outer edges of each LArTPC 
there are three anode wire planes. The first two are induction wire planes angled at 0 and 
60 degrees from horizontal and the third is a collection wire plane angled at -60 degrees 
from horizontal. The angles of the three wire planes give each of them a unique 2D 
representation of the detector. The cathode and anode have an electric potential...which 
accelerates ionized electrons to anode, where the ionized electrons are produced by 
interaction of charged particles originating from the initial neutrino interactions or cosmic 
ray [2][3]. 

Gaussian pulses on LArTPC wires from ionizing electrons form hits. Spacepoints 
are formed by grouping hits from across wire planes, where each spacepoint corresponds 
to three hits, one from each wire plane. Spacepoints are cartesian representations of the 
locations of the hits on the wires. 
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FIG. 1: The geometry of the ICARUS detector  
 

2. NuGraph2 Neural Network 
NuGraph2 is a machine learning Graph Neural Network (GNN) developed by the 

ExaTrkX collaboration for particle reconstruction in neutrino physics [4]. It has been 
implemented in MicroBooNE and will be implemented in ICARUS. Hits form planar nodes 
which have input features in the form of the hit’s wire index, time, and the integral and 
Root Mean Square (RMS) width of its Gaussian pulse. Nexus nodes are made from 
spacepoints and have no input features. Planar nodes within each wire plane are 
connected to each other and to nexus nodes via graph edges created by a Delauney 
triangulation algorithm. 

 
3. Spacepoint Filtering Techniques 

The spacepoints from any event are cluttered with noise that obscure the ionization 
tracks and showers (signal feature) of the events. To address this, spacepoint filtering is 
adopted and two filtering techniques were investigated. 

The first filtering technique tried was filtering spacepoints by their 𝜒2 value, which 
was already included in the spacepoint data produced by the HDF5Maker module of 
LArSoft [5]. A variety of 𝜒2 threshold values were investigated with lower threshold values 
eliminating more noise, however lowering the threshold value too much, such as 𝜒2  < 0.1, 
resulted with removing spacepoints from the ionization tracks and showers without 
noticeable improvement in filtering noise compared to more modest value of 𝜒2  filters, 
suggesting there was a better technique. 

The second technique investigated was filtering by the number of associated hits 
used to make spacepoints where there should be one hit from each of the three wire 
planes. Many spacepoints were only associated with two hits. Removing these 
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spacepoints eliminated far more noise than sharp 𝜒2 filters without loss of data in the 
ionization tracks or showers. Because of these findings, filtering spacepoints by number 
of associated hits was added to the HDF5Maker module of LArSoft by an expert. 

Using both filtering techniques together was also investigated with a variety of 
moderate 𝜒2 thresholds (0.5-1.5). Figure 2 below shows a comparison of the various 
filtering techniques. This was not added to the HDF5Maker module of LArSoft as it 
showed little improvement over filtering by associated hits, however 𝜒2 filtering was added 
to a later stage of the NuGraph2 workflow.  
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FIG. 2: 2D projection of spacepoints without filtering (top), with a 𝜒2 filtering of 0.5 (middle-top), with 
associated hit filtering (middle-bottom), with the two filtering techniques combined (bottom). 
 
4. Event Samples 

Three samples of simulated neutrino (Multi-Particle Vertex) and cosmic muon 
background (Multi-Particle Rain) events were used to train NuGraph2 for ICARUS. They 
had 112 runs (~3,500 events), 1183 runs (~31,000 events), and 10363 runs (~272,000 
events) respectively. These will be referred to as the small, medium, and large samples 
for the rest of this paper. 

Within a sample, all runs were made separately as their own files and had their run 
number equal to 1. A python script was used to give each run a unique run number. 

Once the run numbers were modified, the run files are concatenated into one file. 
If the run numbers weren’t made unique, runs would overwrite each other in the 
concatenated file 

 
5. Preprocessing 

Preprocessing turns the samples into the input for NuGraph2 training by assigning 
semantic labels to hits and creates planar and nexus nodes, which are made from hits 
and spacepoints respectively. Graph edges connecting the planar nodes to one another 
and to nexus nodes are then created via a Delauney triangulation algorithm. Events are 
then split into training, validation, and testing samples. Regardless of the entire sample 
size, 90% of events are put into training, 5% in validation, and 5% in testing samples. 

Before the graph nodes and edges are made, a 𝜒2 cut of 0.5 is applied to the 
spacepoints, empty events are removed, and hits with too many semantic labels are 
removed. These were applied here instead of in LArSoft for efficiency and ease of 
implementation as making new samples wasn’t required for testing different filter 
combinations.  

It is of note that hits with too many semantic labels were not present in the small 
and medium samples and were exceptionally rare in the large sample. Furthermore, 
empty events were not present in the small sample and rarely seen in the medium sample 
after the 𝜒2 filter was added.  
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Ideally, the 𝜒2 filter and removal of empty events would be applied in LArSoft as it 
would allow for smaller file sizes and possibly make run-concatenation and preprocessing 
faster. 

 
6. Training NuGraph2 

When training begins, events are shuffled into equal sized batches, which are 
operated on in a random order. When NuGraph2 training finishes operating on a batch, it 
compares the output from the training to the truth and adjusts its machine learning 
parameters to minimize the difference between the output and truth. These updated 
parameters are used when operating on the next batch. Once all batches have been 
operated on, the process repeats for a set number of epochs. The batch order is different 
for each epoch to reduce bias towards any batch. 

 
6.1 Hyperparameter Optimization 

There are several parameters that affect the training results, duration, and 
resource requirements. These parameters are the learning-rate, number of epochs, and 
the batch-size. Investigations into hyperparameter optimizations discussed in this paper 
were only done on the small and medium samples as investigations with the large sample 
would have been inefficient and time consuming. 
 
6.1.1 Learning-rate 
 NuGraph2 has a default learning-rate of 0.001, however loss plots from trainings 
on the medium sample with 160 epochs showed signs of possible undertraining, which 
was evident from the loss plot not saturating. This led to a short investigation for an 
optimized learning-rate on the medium sample. Training with learning-rate 0.002, 0.0015, 
and 0.00125 showed signs of overtraining. Eventually, training with learning-rate 0.00115 
was done, which showed no signs of overtraining or undertraining, making it the optimized 
learning-rate, at least for the medium sample. The optimized learning-rate can change 
depending on the sample size. Figure 3 (below) shows the loss plots from the learning-
rate investigation. The large sample was trained with learning-rate 0.001 as the learning-
rate investigation wasn’t finished at the time and there were concerns about time 
constraints.  
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FIG. 3: Loss plots as a function of batches operated on from training the medium sample with learning-rate 
0.001 (top-left), 0.0015 (top-right), 0.00125 (bottom-left), 0.00115 (bottom-right)  
 
Table. 1: Tables comparing the values of precision and recall filter and precision and recall semantic for the 
train, validation, and test categories with different learning rates on the medium sample. 
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As shown in table 1 (above), training with learning-rate 0.00125 shows clear signs 
of overtraining as both the precision semantic and recall semantic values for the training 
sample is much higher than they are for the validation and test samples. The training with 
learning-rate 0.00115 is the most consistent between the training, validation, and test 
samples, further showing that it is the optimal learning-rate.  
6.1.2 Epochs 

Training iterates over many epochs and Nugraph2 uses 80 epochs by default. 
NuGrpah2 was trained many times using 160 epochs for both the small and medium 
samples. Doubling the epochs from 80 to 160 marginally improved all training results at 
the cost of extending the training duration by roughly 50%. The improvements were far 
weaker in the medium sample than in the small sample as statistical uncertainties were 
less present.  

The large sample was trained with 80 epochs as improvements from having more 
epochs would be insignificant compared to those from the medium sample and training it 
with 80 epochs roughly takes 14 days, but this depends on the computer resources during 
training. For comparison, training the small and medium samples with 80 epochs takes 
1.5 and 16 hours respectively. 

 
6.1.3 Batch-size 

The final hyperparameter is the batch-size, which defaults to 64 events per batch. 
Changing the batch-size doesn’t show any noticeable differences in training performance, 
however it greatly influences the training time and resource requirements. As the batch-
size increases, the training duration decreases, and the resource requirements increases. 
Training with larger batch-sizes wasn’t investigated as using the default batch-size is 
rather resource intensive (~40 GB GPU). Smaller batch-sizes were only used for 
debugging purposes and to stay within resource availability when training the small 
sample before filters were added to preprocessing. 
 
7. Results 
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At the end of each epoch, four confusion matrices are produced: recall filter, 
precision filter, recall semantic, and precision semantic. Recall and precision are defined 
as [4]: 

 
Where TP is true positives, FP is false positives, and FN is false negatives. Recall 

is more commonly referred to as efficiency and precision is more commonly referred to 
as purity. Filter matrices show how well signal and noise are distinguished from one 
another while semantic matrices show how well particles of different semantic classes 
are distinguished from one another. The semantic classes are minimum ionizing particle 
(MIP), highly ionizing particle (HIP), shower, Michel electron, and diffuse. 

 
 
FIG. 4: Recall filter (Left) and Precision Filter (Right) confusion matrices from the large sample 
 
  As shown in Figure 4 (above), the filter matrices show reasonable results with 98 
percent of the hits identified as signal truly being signal in both matrices and 90 and 89 
percent of hits identified as noise truly being noise in the recall and precision filter matrices 
respectively There is some minor room for improvement with how NuGraph2 identifies 
noise, but overall, the results are promising. 
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FIG. 5: Recall Semantic (Left) and Precision Semantic (Right) confusion matrices from the large sample 
 

While the semantic matrices overall show promising results in Figure 5 (above), there 
is much to be desired with the Michel electron and diffuse categories as they should 
ideally have similar results to the other categories. One of the main reasons for the 
undesired performances would be because these categories contain far fewer hits than 
the other categories.  

 
8. Next Steps 

The results of the large sample will be used to further search for optimized 
hyperparameters, which will be the parameters where the Michel electron and diffuse 
categories have comparable results to the other categories. NuGraph2 will then be trained 
with these parameters before being integrated into ICARUS Pandora reconstruction. 
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