

Training NuGraph2 for ICARUS

Eric Novello

2024 Fall SULI Final Presentation

December 4, 2024

Supervisors:

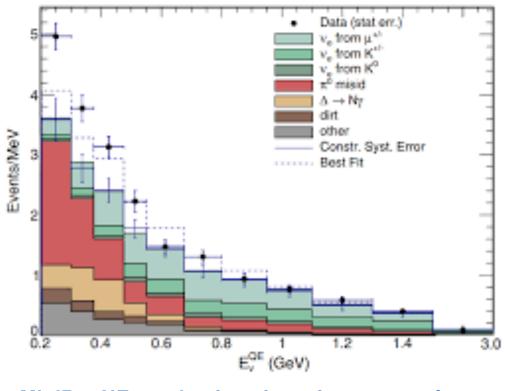
Dr. Sunny Seo

Dr. Giuseppe Cerati

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

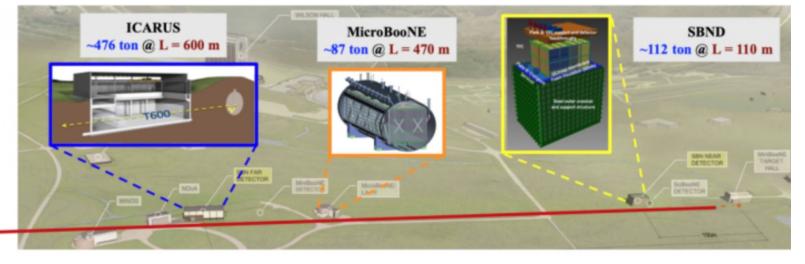
This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

Introduction to ICARUS



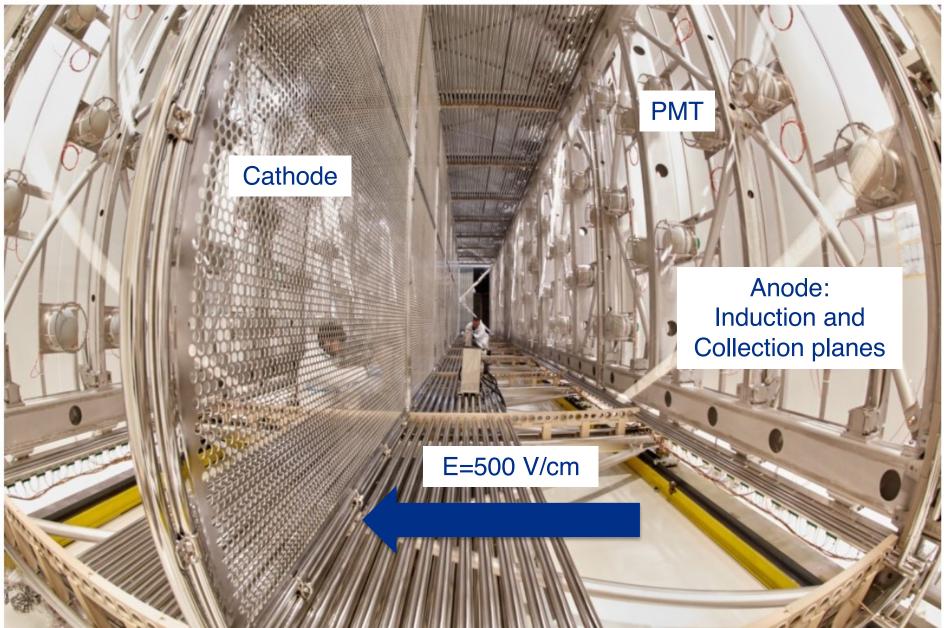
MiniBooNE results that show the excess of energy that could be explained by a fourth generation of neutrino oscillation BNB

- ICARUS aims to confirm or refute the existence of a fourth generation of neutrino oscillation as indicated from other neutrino experiments such as MiniBooNE.
 - ICARUS is one of three experiments in the Short Baseline Neutrino program.
 - The Short Baseline Neutrino Program mainly utilizes the Booster Neutrino Beam, provides it with neutrinos produced by 8 GeV protons on target.



Beamline

ICARUS Detector



12/04/24 Eric Novello I 2024 Fall SULI Final Presentation

ICARUS Geometry

- ICARUS is comprised of four Liquid Argon Time Projection Chambers (LArTPC) in two identical cryostats filled with total <u>760 tons</u> liquid Argon
 - LArTPCs in each cryostat separated by cathode
 - Edges of cryostats have anode (2 induction and one collection wire planes).
 - Electric field between cathode and anode accelerates ionized electrons to anode
 - LArTPCs in each cryostat need their data to be "stitched" together for use in NuGraph2

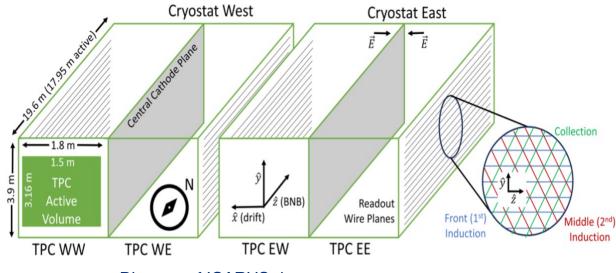
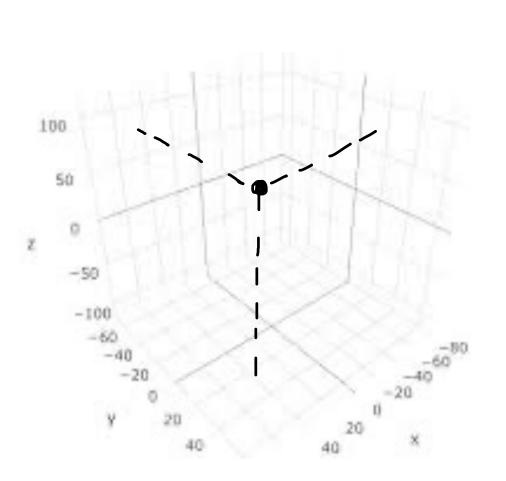


Diagram of ICARUS detector geometry

Hits and Spacepoints

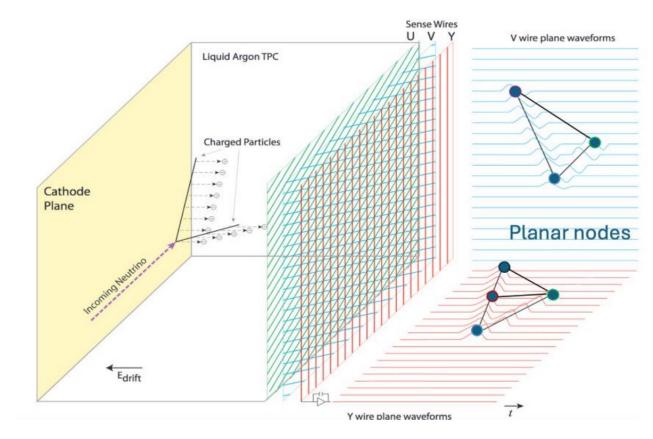


- Gaussian Pulses on TPC wires form hits which are input to graph nodes
- Hits are found by Gaussian hit finder module.
 - Wire numbers and times from hits across planes are converted to cartesian coordinates, spacepoints, produced by Cluster3D module

Simplified Diagram of How Spacepoints are made from hits (A.U.)

NuGraph2

- Graph Neural Network (GNN) produces hit labels for particle identification, event reconstruction
- While CNNs require grid-like inputs and outputs format, GNNs operate on more flexible data formats and are naturally sparse
- NuGraph2 has data in form of planar (hits) and nexus (spacepoints) graph nodes connected with edges.
- Planar nodes connected to each other, nexus nodes only connected to planar nodes
- Already implemented in MicroBooNE
- Want to implement NuGraph2 in ICARUS
- Nugraph2 uses same inputs as other reconstruction algorithms such as Pandora



NuGraph2 Training Workflow

- 1. Spacepoints production
- Credit Ricardo Campos, summer intern

My Work

🚰 Fermilab

- 2. TPC stitching
- 3. Spacepoint filtering
 - Number of associated hits, χ^2 , neutrino slices
- 4. Reassign run numbers, Concatenate run files into single file
- 5. Preprocessing
 - Removing bad data, forming graph nodes and edges
- 6. Training
- 7. Parameter optimization based on NuGraph2 training performance -Next Steps

Stitching TPCs

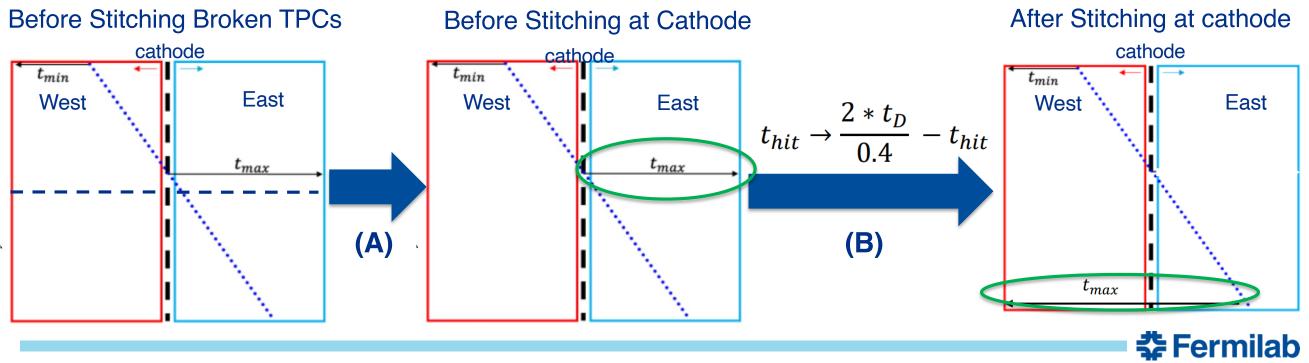
Credit Ricardo Campos, summer intern

Each Cryostat split in four logical TPCs, NuGraph2 wants each cryostat as a single TPC. There are two different stitches (A) and (B):

(A) Each TPC is broken into two at middle of induction plane 1, stitched by offset of wire IDs

(B) TPCs in cryostat are stitched across the cathode

- TPCs east of the cathode have global time equal to local time subtracted from constant



Filtering Spacepoints

Initial data full of noise and background spacepoints, which need to be reduced

• Two filtering techniques (A) and (B) investigated separately then combined (C)

(A) Filtering spacepoints based off χ^2 value

- Setting χ^2 cutoff too low can lead to loss of signal data
- Histogram used to find reasonable values of χ^2 to filter out without loss of track data
 - Spacepoints above χ^2 cutoff **filtered out**

(B) Filtering spacepoints based off number of associated hits in the three wire planes

- Many times, hits from only 2 planes were used to make a spacepoint.
 - Spacepoints constructed from less than 3 hits, one per wire plane, filtered out

🗲 Fermilab

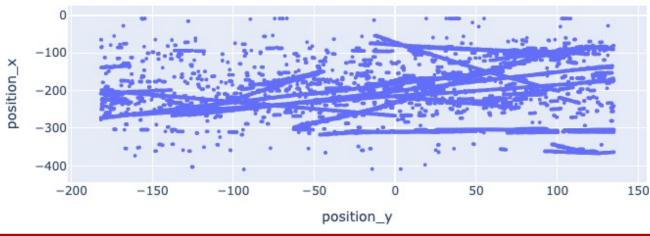
(C) Filtering spacepoints based off χ^2 value and number of associated hits

Combination of filtering methods (A) and (B)

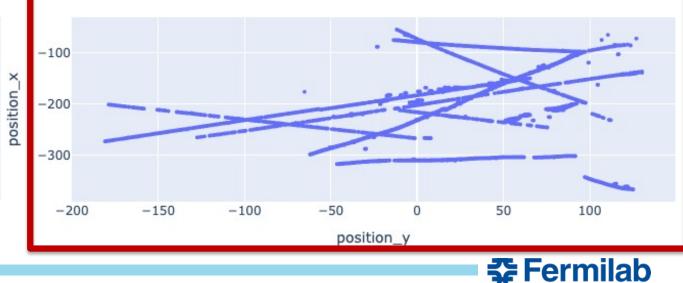
Filtering Spacepoints

XY projection of spacepoints without filtering

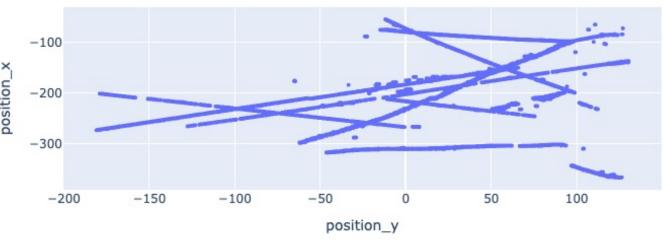
Spacepoints **Removing \chi^2 > 0.5 (A)**



Spacepoints **removing** points from <3 hits and χ^2 >0.5 (C)



Spacepoints **removing** points from < 3 hits (B)



Neutrino Slices

- Each ICARUS event can contain multiple candidate neutrino slices, Nugraph2 designed for only one slice per event
 - Best slice is chosen by the minimum distance between charge and flash barycenters.
 - This further reduces background from cosmics and electric noise

Simulated Event Samples

- MPVMPR sample
- 3 samples:
 - Small(~3,500 events): MPVMPR_MC_v09_89_01_01
 - Medium(~31,000 events): MPVMPR_MC_v09_89_01_01
 - Large(~272,000 events): MPVMPR_MC_FRFIX_v09_89_01_01 (Bug fix)
- Combine run files for each sample to a single hdf5 file to train (ph5concat)
 - Samples made from many run files, each with same run number
 - Run numbers made unique before runs combined

Preprocessing

- Applies χ^2 cutoff of 0.5 and removes rare empty events
 - Could be done during sample generation as well
- Makes graph edges between planar and nexus nodes
- Assigns semantic labels:
 - MIP, HIP, Michel, shower, diffuse
- Normalizes each feature by Gaussian assumption
- Splits events into training (90%), validation (5%), and test (5%) categories
 Eermilab

Training

- Events shuffled into equal sized batches, training operates on batches in random order
- Compares ML output to their truth, adjusts ML parameters and operates on next batch
 - Repeats for all batches
 - Batch-size: 64 events
- Number of **epochs** (iterations): 80 (default)
 - Batch order changes each epoch
 - 160 epochs tried with small and medium samples
 - increased training duration (~+50%) with marginal improvements
- Trainings run on 40 GB GPU EAF server

Learning-Rate Optimization

- Several learning-rates tried on medium sample with 160 epochs to find optimal rate
 - Default learning-rate 0.001 showed under-training in loss plots
 - Learning-rate 0.002, 0.0015, and 0.00125 showed overtraining
 - Learning-rate 0.00115 chosen as optimal rate for medium sample for now

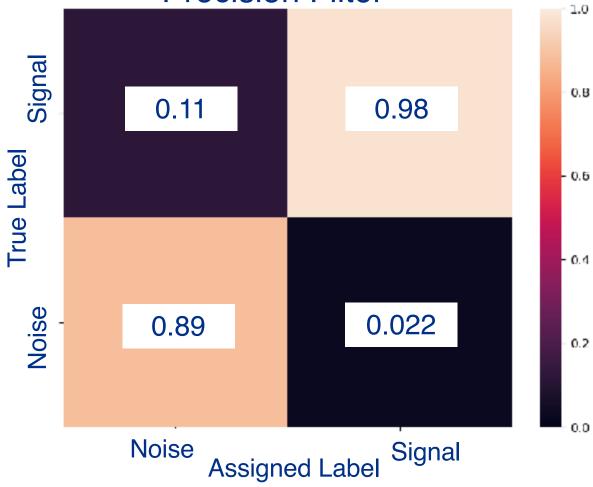
Learning-Rate Optimization

lr 0.001					
prec_filter/train	0.9745	prec_filter/val	0.973	B prec_filter/test	0.9724
recal_filter/train	0.9763	recall_filter/val	0.9748	B recal_filter/test	0.9742
prec_sem/train	0.878	prec_sem/val	0.8755	5 prec_sem/test	0.8679
recall_sem/train	0.8882	recall_sem/val	0.8755	5 recal_sem/test	0.8679
lr 0.00115					
prec_filter/train	0.9697	prec_filter/val	0.9731	prec_filter/test	0.9724
recal_filter/train	0.9753	recall_filter/val	0.9749	erecal_filter/test	0.9743
prec_sem/train	0.8819	prec_sem/val	0.8771	prec_sem/test	0.8698
recall_sem/train	0.8819	recall_sem/val	0.8771	recal_sem/test	0.8698
lr 0.00125					
prec_filter/train	0.972	prec_filter/val	0.9724	prec_filter/test	0.9727
recal_filter/train	0.9766	recall_filter/val	0.9748	recal_filter/test	0.9754
prec_sem/train	0.921	prec_sem/val	0.878	prec_sem/test	0.8774
recall_sem/train	0.921	recall_sem/val	0.878	recal_sem/test	0.8774
lr 0.0015					
prec_filter/train	0.9745	prec_filter/val	0.9731	prec_filter/test	0.9725
recal_filter/train	0.9761	recall_filter/val	0.9747	recal_filter/test	0.9744
prec_sem/train	0.8925	prec_sem/val	0.8754	prec_sem/test	0.8694
recall_sem/train	0.8925	recall_sem/val	0.8754	recal_sem/test	0.8694

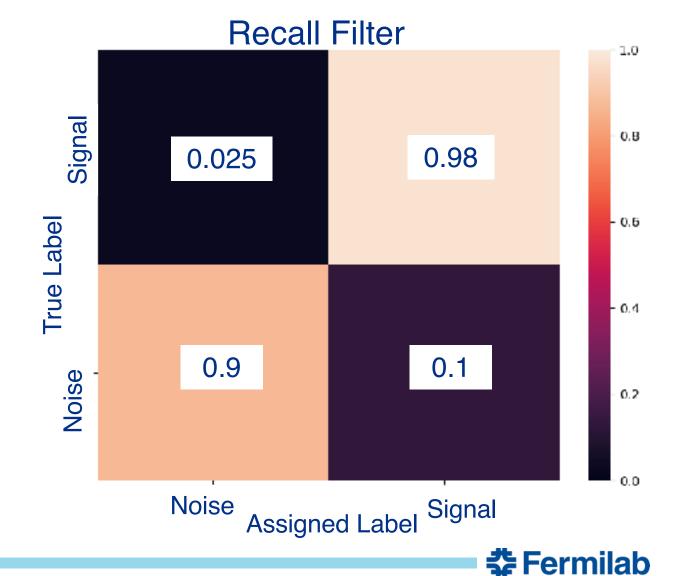
- Learning-rate 0.00125 shows slight overtraining
- Learning-rates 0.001 and 0.0015 show
 possible bias
- Learning-rate 0.00115 shows overall best results
- Further investigation needed

Results

Precision Filter

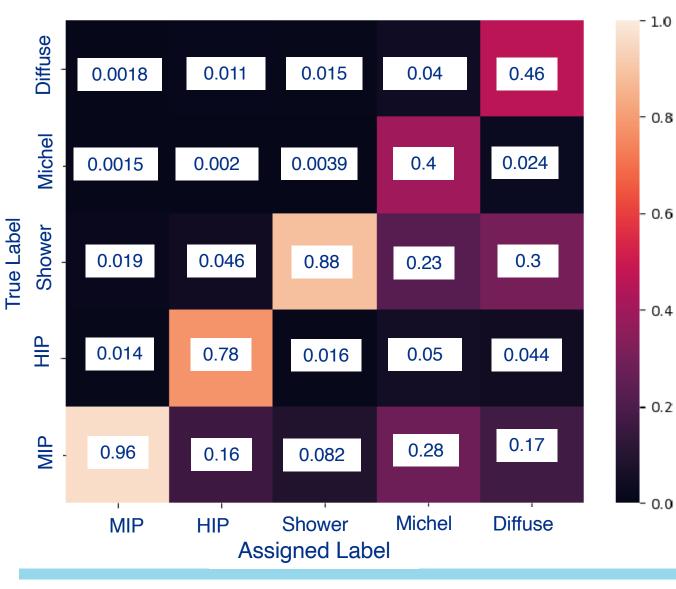


Recall(Efficiency) =
$$\frac{TP}{TP+FN}$$



Results

Precision Semantic Confusion Matrix Large Sample



- Precision commonly called Purity
- Precision = $\frac{TP}{TP+FP}$

- 0.6

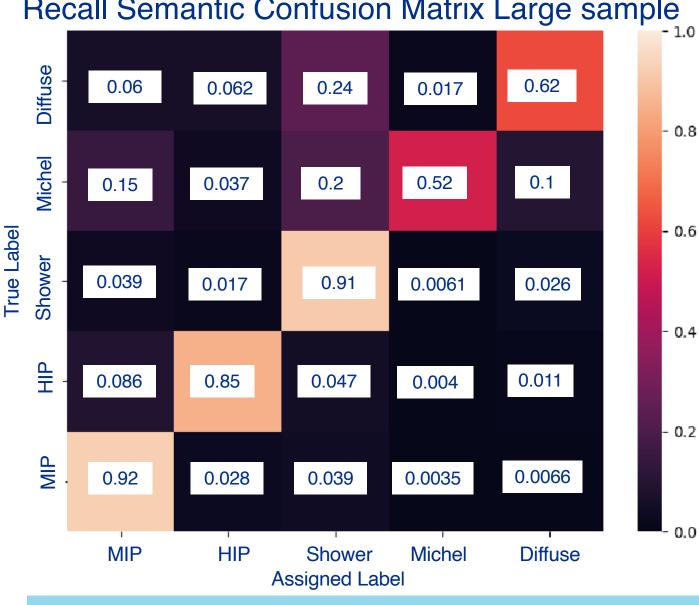
- 0.4

- 0.2

0.0

- Semantic classes are highly-ionizing particle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
 - Michel and diffuse have room for improvement

Results



Recall Semantic Confusion Matrix Large sample

Recall commonly called Efficiency

$$0.6 \quad \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

- Semantic classes are Highly-ionizing lacksquareparticle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
- Michel and diffuse have room for improvement

Next Steps

- Possible further optimization of hyper parameters
- Integrate NuGraph2 in ICARUS Pandora reconstruction

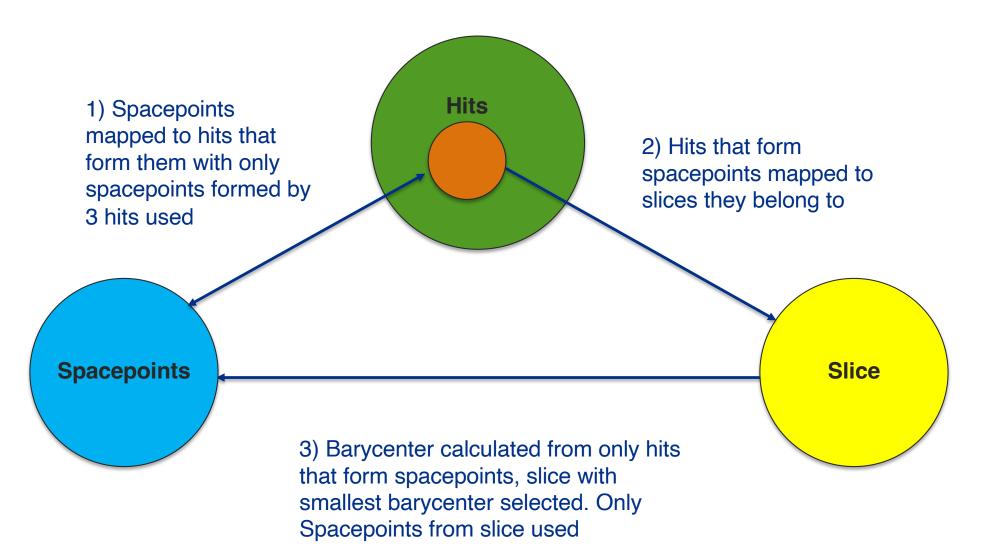
References

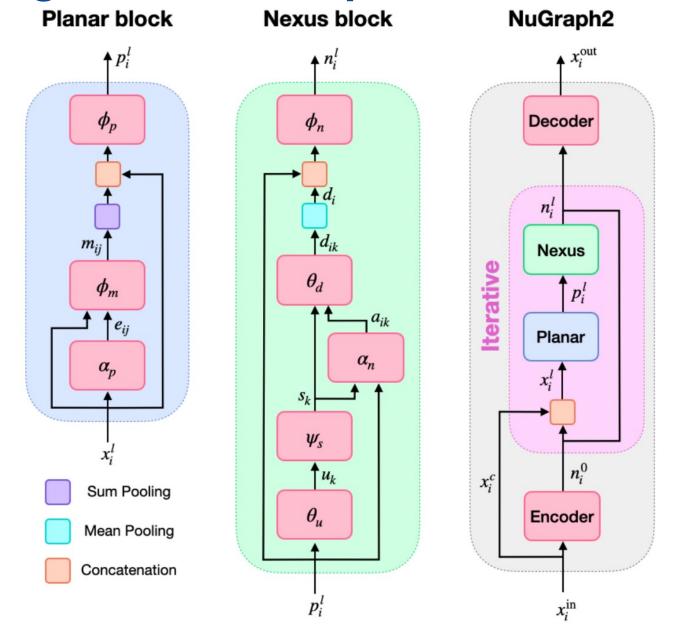
- M. Antonello et al, (2014), A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam, https://arxiv.org/pdf/1503.01520
- P. Abratenko et al, (2023), *ICARUS at the Fermilab Short-Baseline Neutrino Program Initial Operation*, https://arxiv.org/pdf/2301.08634
- G. Cerati et al, (2024), *NuGraph2: A Graph Neural Network for Neutrino Physics Event Reconstruction*, https://arxiv.org/pdf/2403.11872

Collaborations / Partnerships

23 12/04/24 Eric Novello I 2024 Fall SULI Final Presentation

Choosing Best Neutrino Slice



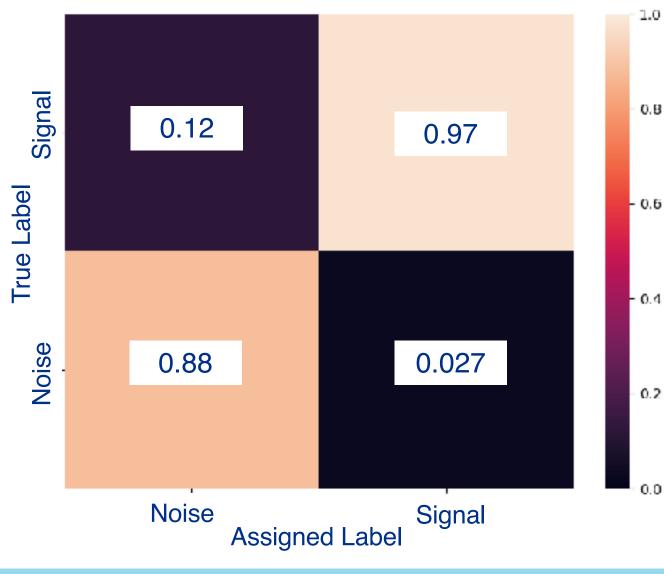


‡ Fermilab

Detailed Diagram of NuGraph2

Results (Ir 0.00125)

Precision Filter confusion Matrix Medium Sample



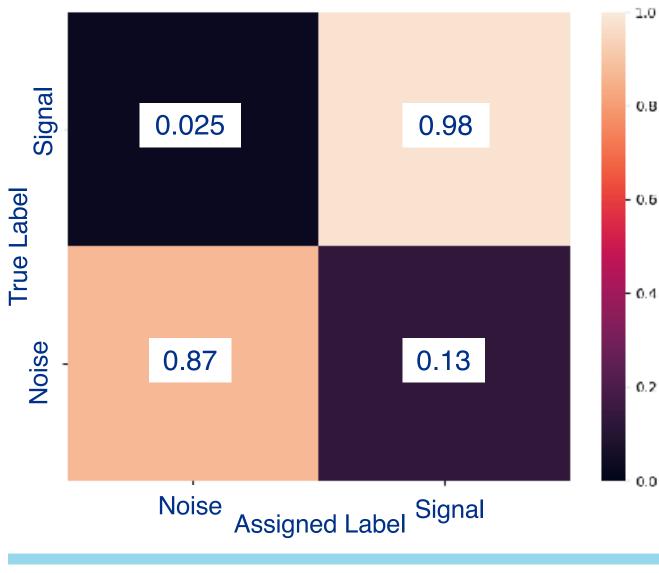
Precision commonly called Purity

‡ Fermilab

• Precision =
$$\frac{TP}{TP+FP}$$

Results (lr 0.00125)

Recall Filter Confusion Matrix Medium Sample



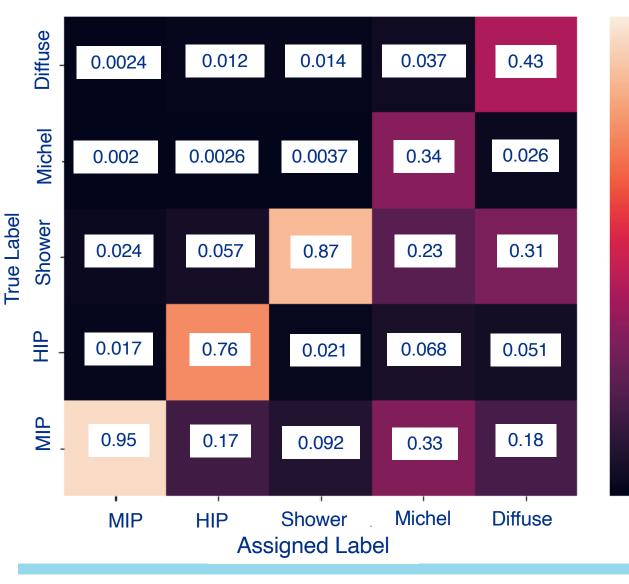
Recall commonly called Efficiency

🛟 Fermilab

• Recall =
$$\frac{TP}{TP+FN}$$

Results (lr 0.00125)

Precision Semantic Confusion Matrix Medium Sample



- Precision commonly called Purity
- Precision = $\frac{TP}{TP+FP}$

- 1.0

- 0.8

- 0.6

- 0.4

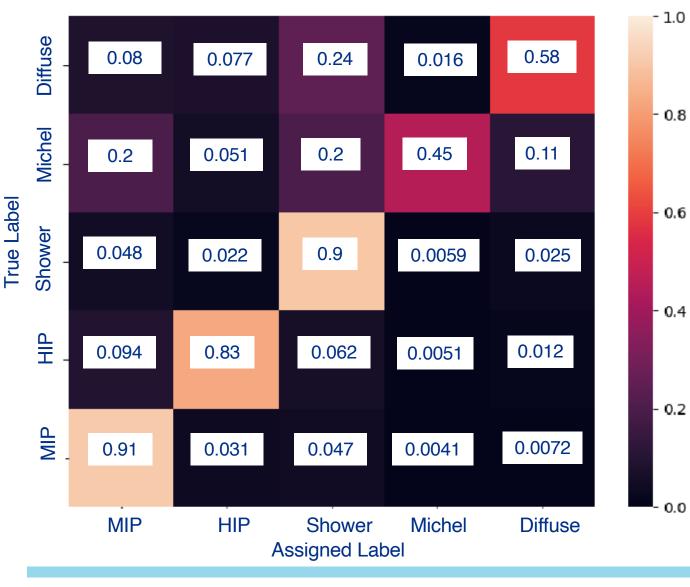
- 0.2

0.0

- Semantic classes are high-ionizing particle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
 - Michel and diffuse have room for improvement

Results (lr 0.00125)

Recall Semantic Confusion Matrix Medium sample



Recall commonly called Efficiency

• Recall
$$=$$
 $\frac{TP}{TP+FN}$

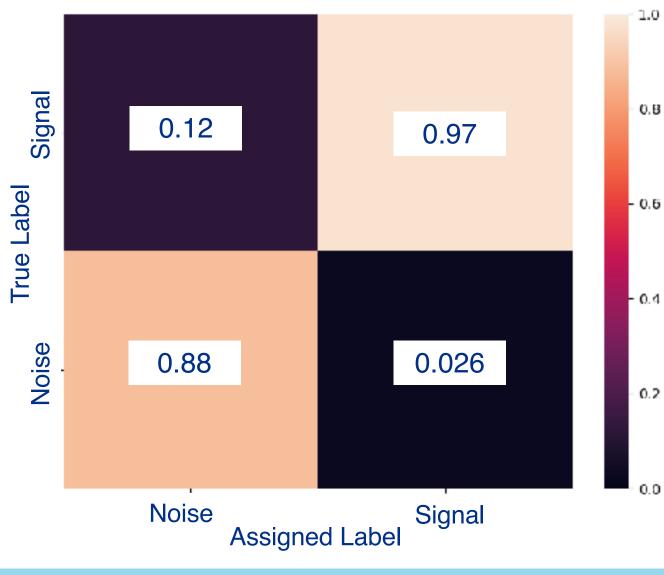
0.4

0.0

- Semantic classes are High-ionizing lacksquareparticle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
- Michel and diffuse have room for improvement

Results (Ir 0.0015)

Precision Filter confusion Matrix Medium Sample



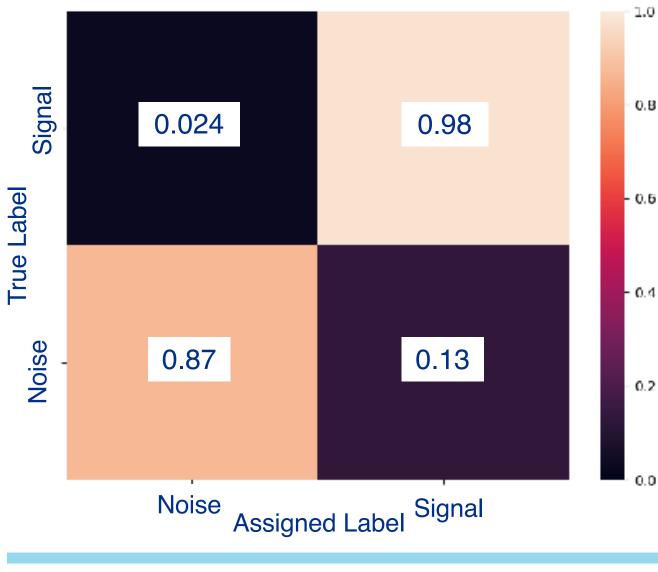
Precision commonly called Purity

‡ Fermilab

• Precision =
$$\frac{TP}{TP+FP}$$

Results (Ir 0.0015)

Recall Filter Confusion Matrix Medium Sample



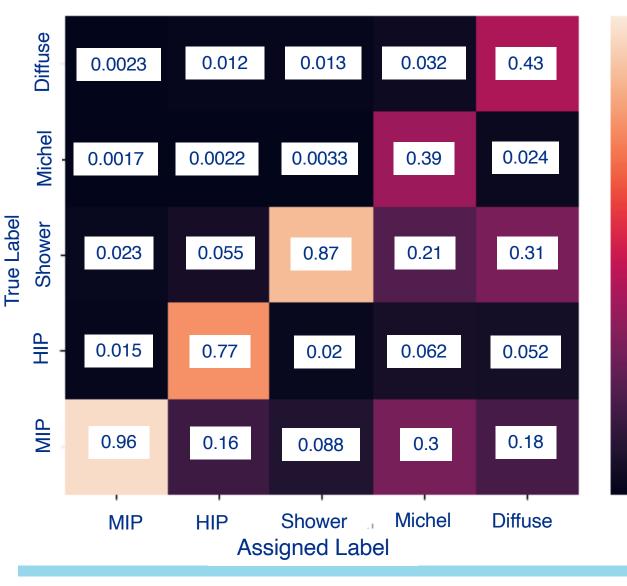
Recall commonly called Efficiency

‡ Fermilab

• Recall =
$$\frac{TP}{TP+FN}$$

Results (Ir 0.0015)

Precision Semantic Confusion Matrix Medium Sample



- Precision commonly called Purity
- Precision = $\frac{TP}{TP+FP}$

1.0

0.8

- 0.6

- 0.4

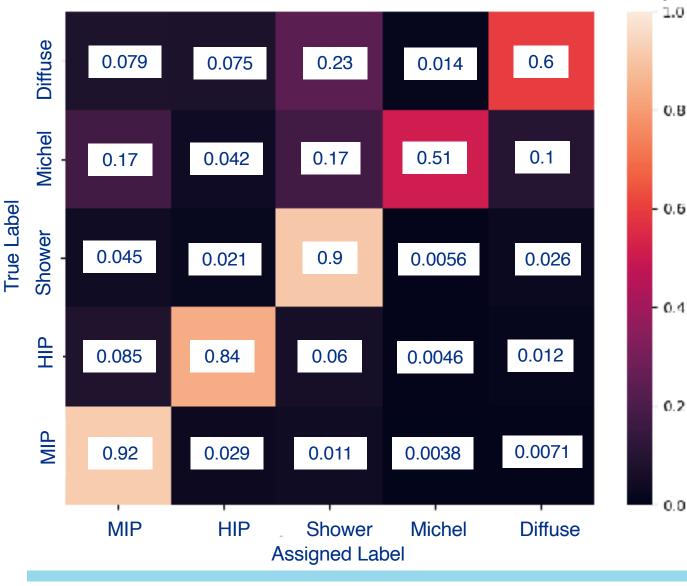
0.2

0.0

- Semantic classes are high-ionizing particle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
- Michel and diffuse have room for improvement

Results (lr 0.0015)

Recall Semantic Confusion Matrix Medium sample



0.8

0.2

0.0

1.0

Recall commonly called Efficiency \bullet

• Recall =
$$\frac{TP}{TP+FN}$$

- Semantic classes are High-ionizing lacksquareparticle (HIP), minimum-ionizing particle (MIP), shower, michel, diffuse
- Michel and diffuse have room for improvement

