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MiniBooNE results that show the excess of 
energy that could be explained by a fourth 

generation of neutrino oscillation

• ICARUS aims to confirm or refute the existence of a 
fourth generation of neutrino oscillation as indicated 
from other neutrino experiments such as MiniBooNE.
– ICARUS is one of three experiments in the Short Baseline 

Neutrino program.

– The Short Baseline Neutrino Program mainly utilizes the 
Booster Neutrino Beam, provides it with neutrinos 
produced by 8 GeV protons on target.
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Introduction to ICARUS



ICARUS Detector
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• ICARUS is comprised of four Liquid Argon 
Time Projection Chambers (LArTPC) in two 
identical cryostats filled with total 760 tons 
liquid Argon 
– LArTPCs in each cryostat separated by 

cathode

– Edges of cryostats have anode (2 induction 
and one collection wire planes).

– Electric field between cathode and 
anode accelerates ionized electrons 
to anode

– LArTPCs in each cryostat need their 
data to be “stitched” together for use 
in NuGraph2

ICARUS Geometry
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Diagram of ICARUS detector geometry



Simplified Diagram of How Spacepoints are 
made from hits (A.U.)

• Gaussian Pulses on TPC wires form hits which 
are input to graph nodes

• Hits are found by Gaussian hit finder module. 
– Wire numbers and times from hits across planes 

are converted to cartesian coordinates, 
spacepoints, produced by Cluster3D module
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Hits and Spacepoints



NuGraph2
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• Graph Neural Network (GNN) produces hit labels 
for particle identification, event reconstruction

• While CNNs require grid-like inputs and outputs 
format, GNNs operate on more flexible data 
formats and are naturally sparse

• NuGraph2 has data in form of planar (hits) and 
nexus (spacepoints) graph nodes connected 
with edges.

• Planar nodes connected to each other, nexus 
nodes only connected to planar nodes

• Already implemented in MicroBooNE
• Want to implement NuGraph2 in ICARUS
• Nugraph2 uses same inputs as other 

reconstruction algorithms such as Pandora



1. Spacepoints production
2. TPC stitching
3. Spacepoint filtering

- Number of associated hits, 𝜒2, neutrino slices

4. Reassign run numbers, Concatenate run files into single file
5. Preprocessing 

- Removing bad data, forming graph nodes and edges

6. Training
7. Parameter optimization based on NuGraph2 training performance

NuGraph2 Training Workflow 
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Credit Ricardo 
Campos, summer 

intern

My Work

Next Steps



Each Cryostat split in four logical TPCs, NuGraph2 wants each cryostat as a single TPC.
There are two different stitches (A) and (B):

(A) Each TPC is broken into two at middle of induction plane 1, stitched by offset of wire IDs

(B) TPCs in cryostat are stitched across the cathode
– TPCs east of the cathode have global time equal to local time subtracted from constant

Stitching TPCs
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Before Stitching at Cathode After Stitching at cathode
cathode cathode

Before Stitching Broken TPCs
cathode

Credit Ricardo 
Campos, summer 

intern
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(A) Filtering spacepoints based off 𝜒2 value
• Setting 𝜒2 cutoff too low can lead to loss of signal data

•  Histogram used to find reasonable values of 𝜒2 to filter 
out without loss of track data

– Spacepoints above 𝜒2 cutoff filtered out

(B) Filtering spacepoints based off number 
of associated hits in the three wire planes

• Many times, hits from only 2 planes were 
used to make a spacepoint.
– Spacepoints constructed from less than 3 

hits, one per wire plane, filtered out

12/04/24 Eric Novello | 2024 Fall SULI Final Presentation9

Filtering Spacepoints

(C) Filtering spacepoints based off 𝜒2 value 
and number of associated hits
• Combination of filtering methods (A) and (B)

Initial data full of noise and background spacepoints, which need 
to be reduced

• Two filtering techniques (A) and (B) investigated separately 
then combined (C)



Filtering Spacepoints
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Spacepoints Removing 𝜒2>0.5 (A)XY projection of spacepoints without filtering

Spacepoints removing points from < 3 hits (B) Spacepoints removing points from < 3 hits and 𝜒2>0.5 (C)



• Each ICARUS event can contain multiple candidate neutrino slices, 
Nugraph2 designed for only one slice per event
– Best slice is chosen by the minimum distance between charge and flash 

barycenters.

– This further reduces background from cosmics and electric noise
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Neutrino Slices
Credit Ricardo 

Campos, summer 
intern



• MPVMPR sample
• 3 samples: 
– Small(~3,500 events): MPVMPR_MC_v09_89_01_01  
– Medium(~31,000 events): MPVMPR_MC_v09_89_01_01 
– Large(~272,000 events): MPVMPR_MC_FRFIX_v09_89_01_01 (Bug fix) 

• Combine run files for each sample to a single hdf5 file to train (ph5concat)
– Samples made from many run files, each with same run number
– Run numbers made unique before runs combined

Simulated Event Samples
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• Applies 𝜒2 cutoff of 0.5 and removes rare empty events
– Could be done during sample generation as well

• Makes graph edges between planar and nexus nodes
• Assigns semantic labels:
– MIP, HIP, Michel, shower, diffuse

• Normalizes each feature by Gaussian assumption
• Splits events into training (90%), validation (5%), and test (5%) 

categories

Preprocessing
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• Events shuffled into equal sized batches, training operates on batches in random 
order

• Compares ML output to their truth, adjusts ML parameters and operates on next 
batch
– Repeats for all batches
– Batch-size: 64 events

• Number of epochs (iterations): 80 (default)
– Batch order changes each epoch

– 160 epochs tried with small and medium samples
• increased training duration (~+50%) with marginal improvements

• Trainings run on 40 GB GPU EAF server

Training
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• Several learning-rates tried on medium sample with 160 epochs to find optimal rate
– Default learning-rate 0.001 showed under-training in loss plots
– Learning-rate 0.002, 0.0015, and 0.00125 showed overtraining

– Learning-rate 0.00115 chosen as optimal rate for medium sample for now

Learning-Rate Optimization
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Learning Rate 0.001 Learning Rate 0.00115
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Learning-Rate Optimization 
• Learning-rate 0.00125 shows slight 

overtraining
• Learning-rates 0.001 and 0.0015 show 

possible bias
• Learning-rate 0.00115 shows overall 

best results
• Further investigation needed



Results
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Results 
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Precision Semantic Confusion Matrix Large Sample
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• Precision commonly called Purity

• Precision = "#
"#$%#

• Semantic classes are highly-ionizing 
particle (HIP), minimum-ionizing 
particle (MIP), shower, michel, diffuse

• Michel and diffuse have room for 
improvement
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• Recall commonly called Efficiency

• Recall = "#
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• Semantic classes are Highly-ionizing 
particle (HIP), minimum-ionizing 
particle (MIP), shower, michel, diffuse

• Michel and diffuse have room for 
improvement



• Possible further optimization of hyper parameters
• Integrate NuGraph2 in ICARUS Pandora reconstruction

Next Steps
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Backup slides
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Choosing Best Neutrino Slice
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Spacepoints

Hits

Slice

2) Hits that form 
spacepoints mapped to 
slices they belong to

1) Spacepoints 
mapped to hits that 
form them with only 
spacepoints formed by 
3 hits used

3) Barycenter calculated from only hits 
that form spacepoints, slice with 
smallest barycenter selected. Only 
Spacepoints from slice used

Credit Ricardo 
Campos, summer 

intern



Detailed Diagram of NuGraph2
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Results (lr 0.00125)
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• Precision commonly called Purity

• Precision = "#
"#$%#
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Results (lr 0.00125)
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Results (lr 0.00125)
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• Precision commonly called Purity
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• Semantic classes are high-ionizing 
particle (HIP), minimum-ionizing 
particle (MIP), shower, michel, diffuse

• Michel and diffuse have room for 
improvement
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Results (lr 0.00125)
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particle (HIP), minimum-ionizing 
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improvement



Results (lr 0.0015)

12/04/24 Eric Novello | 2024 Fall SULI Final Presentation30

• Precision commonly called Purity

• Precision = "#
"#$%#

Precision Filter confusion Matrix Medium Sample 

Tr
ue

 L
ab

el
Si

gn
al

Assigned Label

N
oi

se

0.970.12

0.0260.88

Noise Signal



12/04/24 Eric Novello | 2024 Fall SULI Final Presentation31

Results (lr 0.0015)
Recall Filter Confusion Matrix Medium Sample
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Results (lr 0.0015)
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Precision Semantic Confusion Matrix Medium Sample
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• Precision commonly called Purity

• Precision = "#
"#$%#

• Semantic classes are high-ionizing 
particle (HIP), minimum-ionizing 
particle (MIP), shower, michel, diffuse

• Michel and diffuse have room for 
improvement
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Results (lr 0.0015)
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• Recall commonly called Efficiency
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• Semantic classes are High-ionizing 
particle (HIP), minimum-ionizing 
particle (MIP), shower, michel, diffuse

• Michel and diffuse have room for 
improvement


