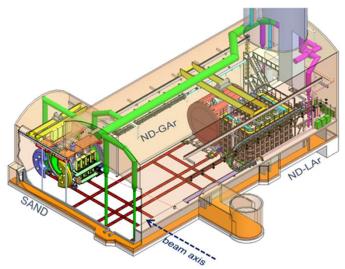
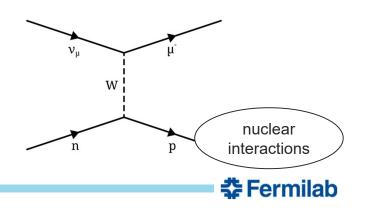
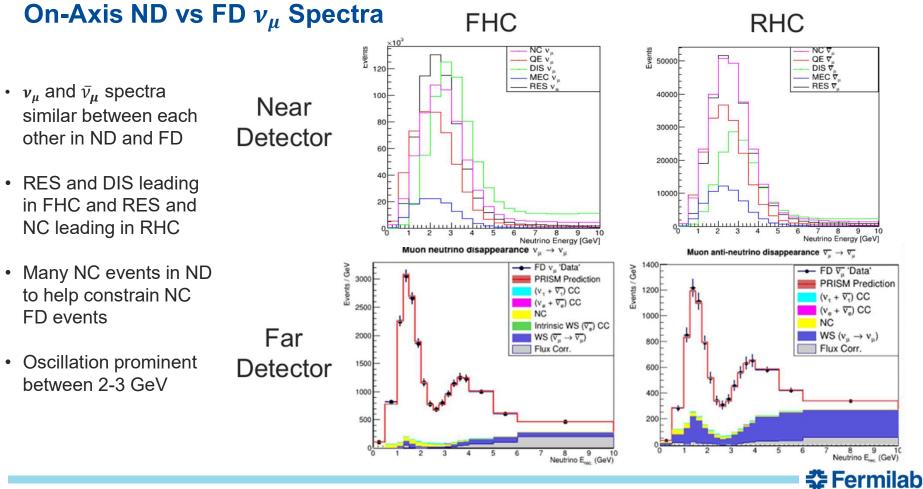


Simulated Neutrino Interactions in DUNE PRISM ND-LAr – Predicted Kinematics and Event Generator Dependence in Quasi-Elastic Events

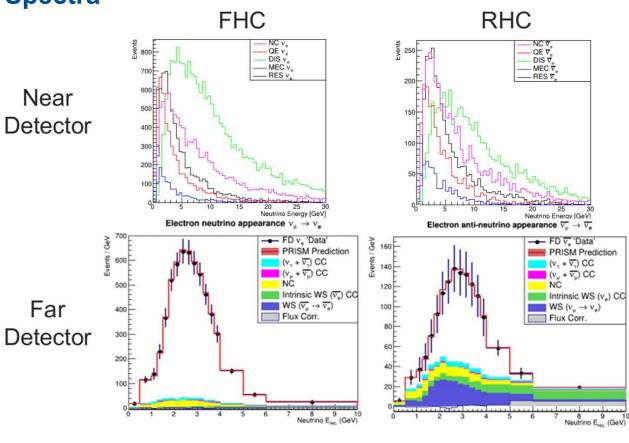

Andrew Garcia, Minerba Betancourt North Central College, Fermilab 4th December 2024


This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.


This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

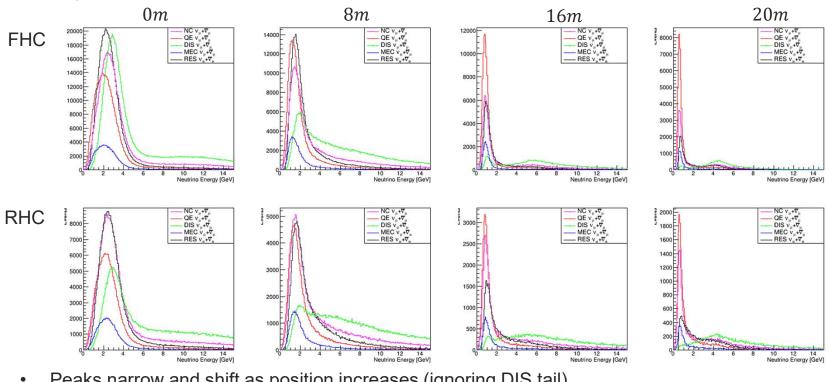
Overview...

- Neutrino interactions in ND-LAr as a whole
 - We will compare spectra between horn configurations, interaction channels, and axis positions
 - Movable transverse to beam to detect off-axis events which have varying spectra (PRISM concept better characterize beam for FD)
 - Looking at simulated data from GENIE event generator (truth level) corresponding to roughly 4 days of real data (POT=10^19)
- Main study focused on QE exclusive events (self-generated)
 - Experimentally measurable observables of interest
 - Compare results between event generators and models (Achilles and GENIE)


/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF

Caracas, I. DUNE-PRISM: An innovative technique for neutrino oscillation analysis.

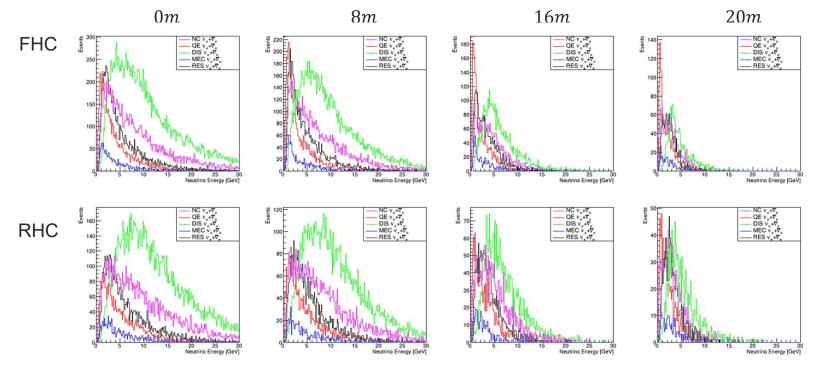
On-Axis ND vs FD v_e **Spectra**


 $/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF$

- ND and FD spectra differ Near dramatically (specifically DIS) Detector
- ND spectra differences useful for eliminating non-oscillated background v_e
- Again, NC contributes to ND and FD spectra

🛟 Fermilab

Caracas, I. DUNE-PRISM: An innovative technique for neutrino oscillation analysis.



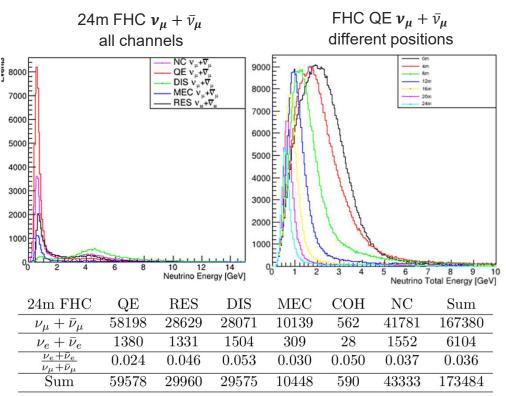
$v_{\mu} + \overline{v}_{\mu}$ Spectra as a Function of PRISM ND-LAr Positions

- Peaks narrow and shift as position increases (ignoring DIS tail) .
- QE dominates low energy region as position increases •
- NC more dominate in RHC for all positions

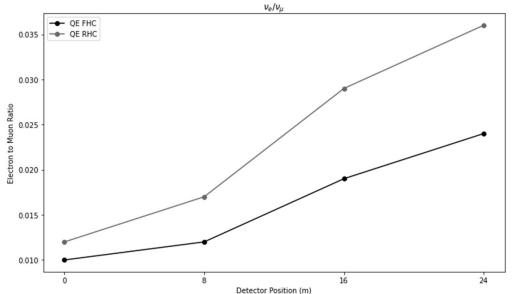
/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF

$v_e + \overline{v}_e$ Spectra as a Function of PRISM ND-LAr Positions

- Again, peaks narrow and shift as position increases
- DIS dominates total events less so as position increases
- Again, QE dominates low energy region as position increases


/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF

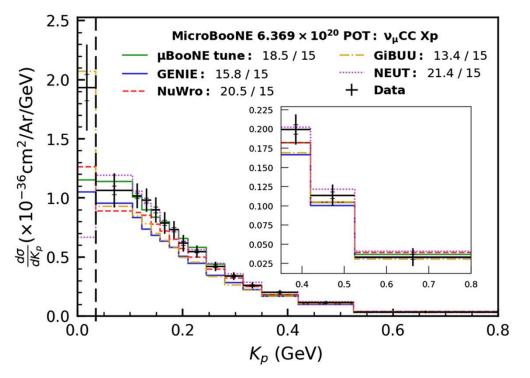
Going More In-depth with QE Events...


/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF

- QE provides the most statistics for off-axis events which are interesting for FD constraints
- What we will look at:
 - Electron to muon neutrino ratios
 - Strong similarities between DUNE offaxis and MicroBooNE neutrino spectra
 - Muon and proton kinematics compared between Achilles and GENIE models

$v_e + \bar{v}_e / v_\mu + \bar{v}_\mu$ vs PRISM ND-LAr Position (QE Events)

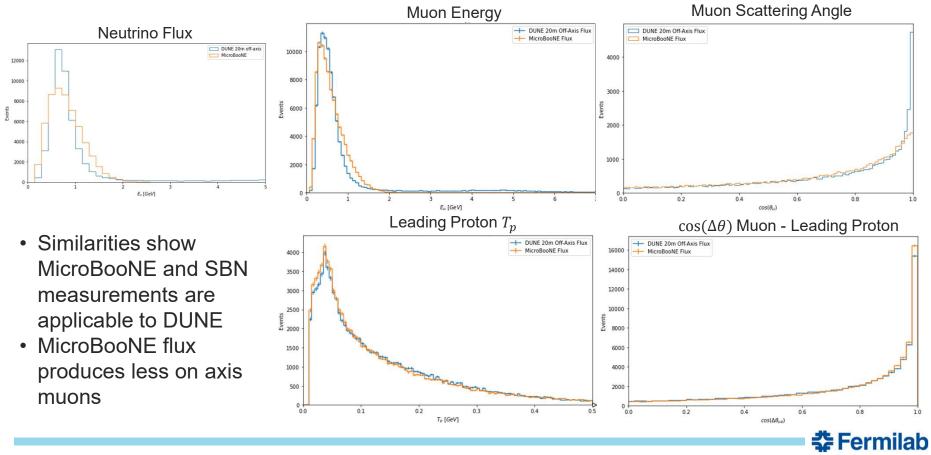
/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF


QE FHC	0m	8m	16m	24m
$ u_{\mu} + ar{ u}_{\mu}$	494500	307013	124307	58198
$\nu_e + \bar{\nu}_e$	5094	3745	2326	1380
$rac{ u_e + ar u_e}{ u_\mu + ar u_\mu}$	0.010	0.012	0.019	0.024
OF DUC	0	0	10	04
QE RHC	0m	8m	16m	24m
$\frac{\text{QE RHC}}{\nu_{\mu} + \bar{\nu}_{\mu}}$	0m 222747	8m 126113	16m 44689	24m 20960

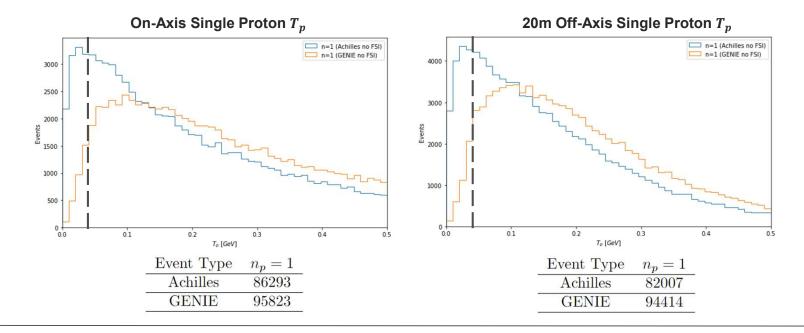
- Ratio increases monotonically with off-axis position for both FHC and RHC
 - Due to off-axis kaons in neutrino beam production which favor v_e decays

QE Kinematics Between Achilles and GENIE

- Past results have shown models disagree at low proton energies
- We did a similar study with Achilles and GENIE with QE events only
- Generated events information:
 - 100,000 muon neutrino exclusive events analyzed at truth level for both Achilles and GENIE
 - n=1, n=2, n>2 proton exclusive cases
 - 0.3 GeV momentum cut on protons dependence (current LAr measurement threshold)
 - FSI dependence


journals.aps.org/prl/pdf/10.1103/PhysRevLett.133.041801 (MicroBooNE Collaboration)

Event Generators/Model Information


Gener	rator	QE Model		Nuclear Model		Form Factors
Achille	es	Spectral function approach		LocalFGM		Vector: Kelly Axial: z-expansion https://arxiv.org/abs/0708.1946
GENIE (AR23		Nieves, RP	Ą	LocalFGM		Vector: BBBA parameterization Axial: z-expansion [0708.1946] Vector and Axial Nucleon Form Factors:A Duality Constrained Parameterization
	FSI Model		Pauli-Blo	No (us		de
	Achilles		Yes			NLC like)
	hA2018		No https://arxiv.or			es fits from data) v.org/pdf/2103.07535
	hN2018		No https://arxiv.or	g/pdf/2103.07535	Yes https://arxi	v.org/pdf/2103.07535

Comparing DUNE 20m Off-Axis with MicroBooNE (Achilles)

Comparing Achilles and GENIE: Single Proton *T*_{*P*} without FSI

- Differences at low energies
- Adding cut shows proton momentum differences between models – Achilles has more low momentum protons that get cut
- With 0.3 GeV Cut
 - With 0.3 GeV Cut

‡ Fermilab

Adding in FSI: Event Numbers for Proton Cases (100,000 Events)

Event Type $n_p = 1$ $n_p = 2$

45791

46001

46555

Achilles

hA

hN

On-Axis – more spread and higher energy neutrinos 20m Off-Axis – lower and more monoenergetic energies

Without 0.3 **GeV Cut on** protons

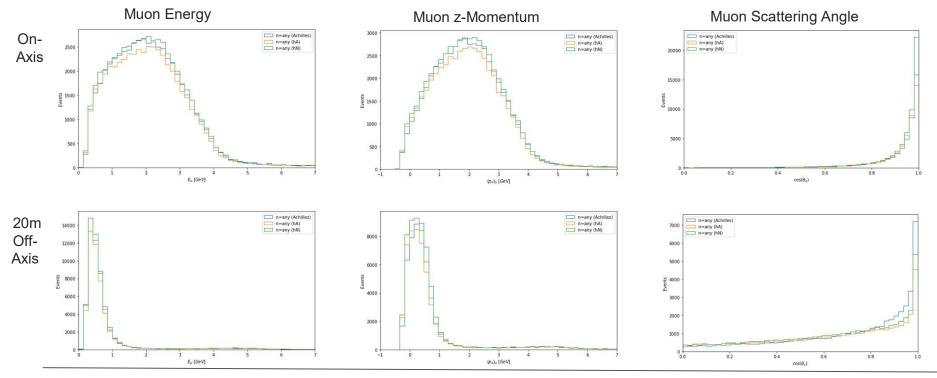
$n_p > 2$	Total	Event Type	$n_{p} = 1$	$n_p = 2$	$n_p > 2$	Total
1781	56575	Achilles	46174	9104	1599	56877
1075	51223	hA	47130	4318	1113	525 <mark>6</mark> 1
2336	55880	hN	47788	7610	2686	58084

• Similar $n_p = 1$ events across models and axis positions

9003

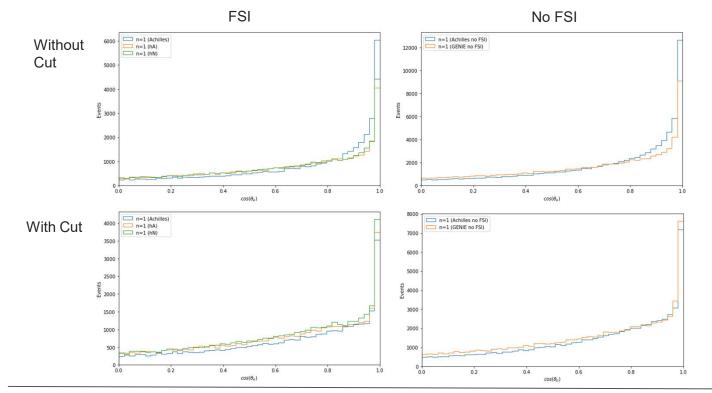
4147

6989

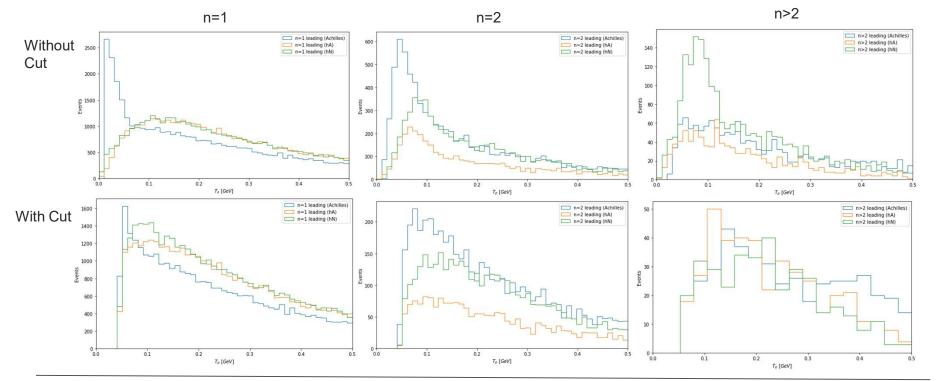

- Achilles leads in $n_p = 2$ followed by hN
- hN leads in $n_p > 2$ followed by Achilles

	Event Type	$n_p = 1$	$n_p = 2$	$n_{p} > 2$	Total	Event Type	$n_p = 1$	$n_p = 2$	$n_p > 2$	Total
• With 0.3	Achilles	41015	5910	623	47548	Achilles	40198	4704	417	45319
GeV Cut	hA	46342	2380	460	49182	hA	47344	2180	338	49862
on protons	hN	48393	4364	407	53164	hN	50219	4137	333	54689

- Achilles loses events from all categories: energy spread between leading and subleading protons
- hA and hN gain n=1 events: more energy in leading proton subleading protons get filtered out turning events into n=1 events

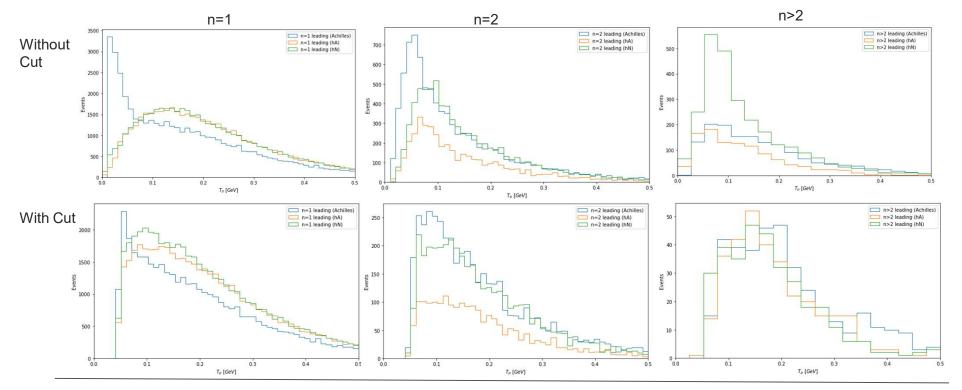


- Strong similarities across kinematics and axis-positions
- Achilles has more events with smaller scattering angle muons (more differences in 20m)

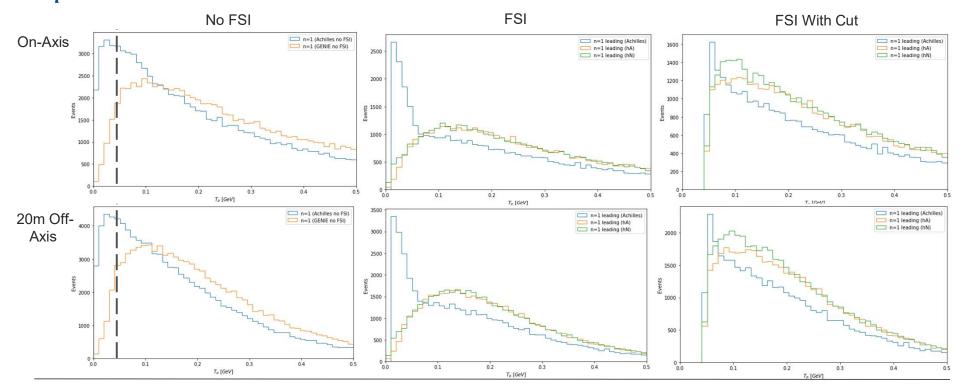

‡Fermilab

20m Muon Scattering Angle: Single Proton Events

- Achilles difference in muon scattering angle is independent of FSI model
- Adding momentum cut helps Achille's additional low momentum protons causing muons to have small scattering angles

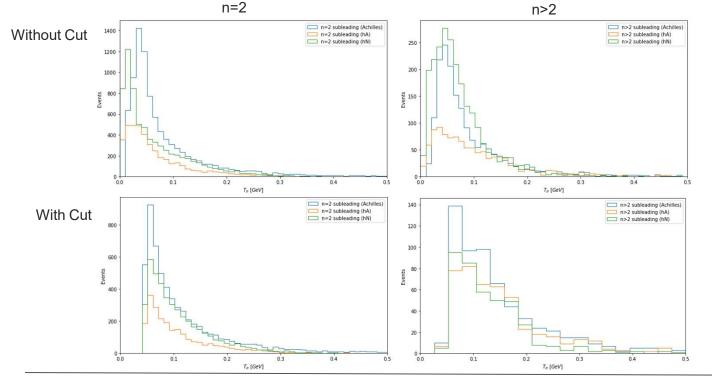


On-Axis Leading T_p : n = 1, n = 2, n > 2 Proton Cases with FSI


- · Achilles peaks at lower energies for n=1: cut removes these extra low energy events
- Distribution shapes somewhat converge as proton number increases
- Without cut n>2 hN has low energy peak hN's extra n>2 events are all low energy (cut removes this feature)
 Fermilab

- · Very similar model relations compared to the On-Axis case
- Axis position doesn't have much effect on proton energies or model relations

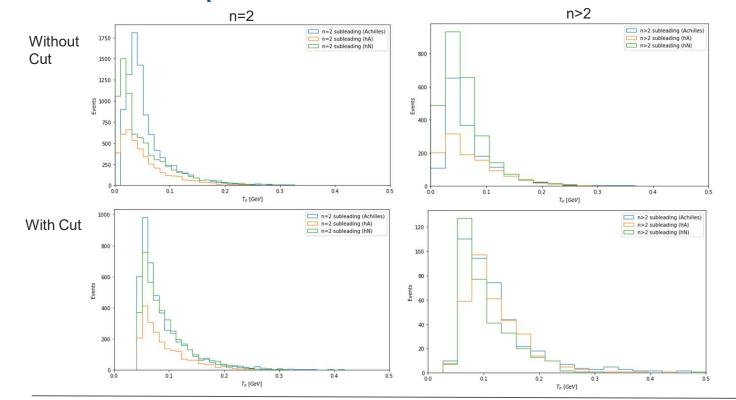
‡ Fermilab



‡ Fermilab

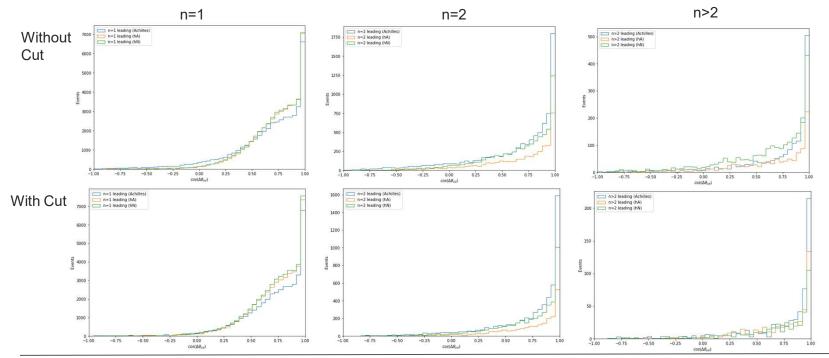
T_p with/without FSI: n=1 Proton Case: On-Axis/20m Off-Axis

- As we have already seen differences without FSI: Achilles QE model favors lower energy protons
- Adding FSI creates more differences momentum cut helps dramatically but still some differences



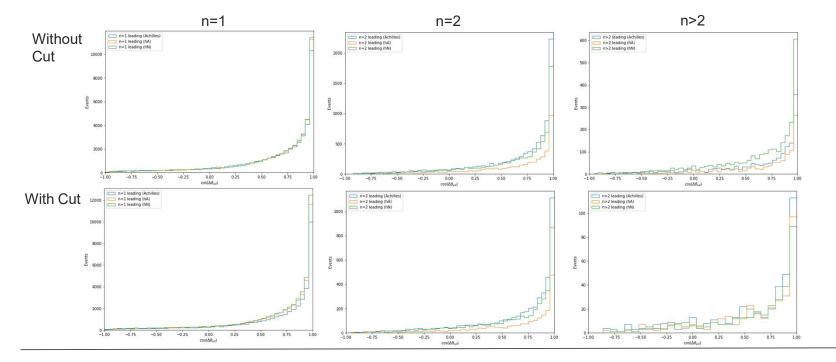
On-Axis Subleading T_p : n = 2, n > 2 **Proton Cases**

- Slightly different peaks between Achilles and hN for n=2 without cut become more similar for n>2
- · Adding cut makes distribution shapes very similar besides relative event numbers
- hA differences due to having way less multi-proton events



20m Subleading T_p : n = 2, n > 2 Proton Cases

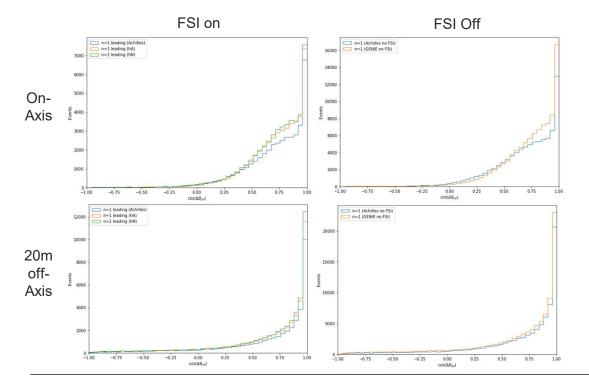
· Comparable to On-Axis distributions - subleading energies have very little dependence on axis position



On-Axis Angle Between Muon and Leading Proton ($cos(\Delta\theta)$)

- All models predict distinct n=1 distribution shape (quick increase of events towards 45°)
- Achilles has slightly less events with small $\Delta \theta$ and slightly more events for large $\Delta \theta$ for single proton events
- Cut removes Achilles high Δθ events but results are mostly cut independent.
 Differences in multi-proton events appears to be due purely to event numbers (hA has less multi-proton events)
 Fermilab

12/4/2024 21 Andrew Garcia


20m Off-Axis Angle Between Muon and Leading Proton ($cos(\Delta \theta)$)

- n=1 differences vanish compared to on-axis more monoenergetic
- Again, differences between multi-particle events appear to be due to event number differences

‡Fermilab

Proton-Muon $cos(\Delta \theta)$: **On-Axis/20m** Off-Axis: FSI on/off

· On-Axis differences due to QE model of form factors differences

Summary and Conclusions of Study

- Neutrino interactions in DUNE ND-LAr in general...
 - Spectra and channel contribution depend significantly on detector position and beam mode
 - RES,DIS, and NC are the largest contribution for on-axis events and QE dominate off-axis events
- QE results...
 - Electron to muon neutrino ratios increase as a function of position
 - Achilles and GENIE models predict similarities and differences in kinematics
 - Differences in event numbers for proton cases
 - Similar muon kinematics (slight difference in 20m scattering angle)
 - Significant differences in proton kinematics (differences still present when FSI turned off)
- Results motivate future studies...
 - Compare with more FSI models (INCL++)
 - Study how models differ for different interaction channels (RES pions events) and different final state cases
 - Pin down main sources of event numbers and kinematics differences between models (starting with QE models)

Affiliations

Event Statistics – All Channels and Positions

0m RHC

OE

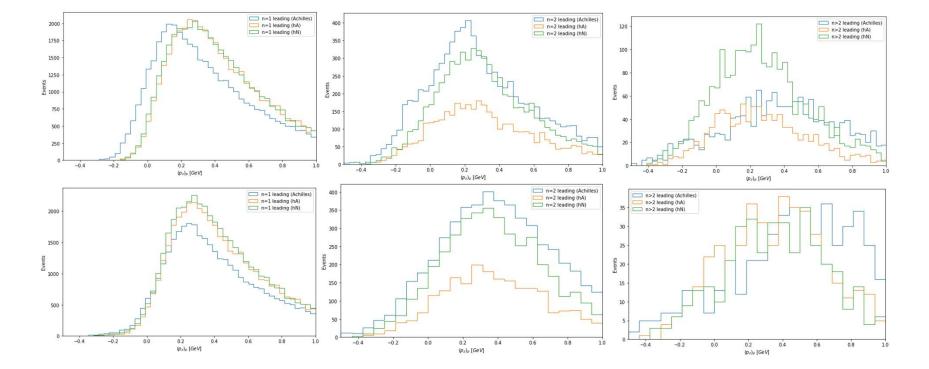
RES

DIS

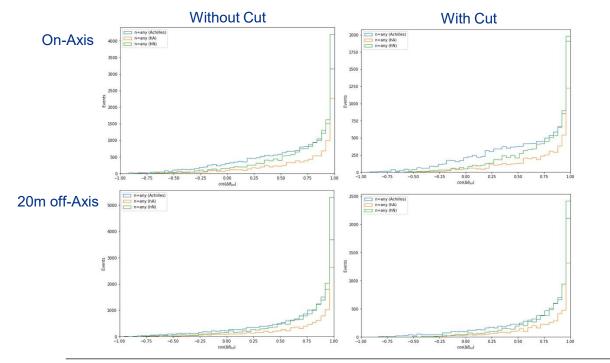
MEC COH

NC

Sum


0m FHC	QE	RES	DIS	MEC	COH	NC	Sum
$\overline{\nu_{\mu} + \bar{\nu}_{\mu}}$	494500	655594	722291	124947	11576	635632	2644540
$\overline{\nu_e + \bar{\nu}_e}$	5094	6573	12522	1281	210	8301	33981
$rac{ u_e + ar u_e}{ u_\mu + ar u_\mu}$	0.010	0.010	0.017	0.010	0.018	0.013	0.013
Sum	499594	662167	734813	126228	11786	643933	2678521
8m FHC	QE	RES	DIS	MEC	COH	NC	Sum
$ u_{\mu} + ar{ u}_{\mu}$	307013	342093	338668	75102	5770	338636	1407282
$\nu_e + \bar{\nu}_e$	3745	4704	8055	998	136	5732	23370
$\frac{\nu_e + \bar{\nu}_e}{\nu_\mu + \bar{\nu}_\mu}$	0.012	0.014	0.024	0.013	0.024	0.017	0.017
Sum	310758	346797	346723	76100	5906	344368	1430662
16m FHC	QE	RES	DIS	MEC	COH	NC	Sum
$\frac{16\text{m FHC}}{\nu_{\mu} + \bar{\nu}_{\mu}}$	QE 124307	RES 84159	DIS 71351	MEC 26334	COH 1440	NC 98404	Sum 405995
	-						
$\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}}$	124307	84159	71351	26334	1440	98404	405995
$\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_e + \bar{\nu}_e}$	124307 2326	84159 2546	$71351 \\ 3599$	26334 590	1440 77	98404 2889	405995 12027
$\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}}$ $\frac{\nu_{e} + \bar{\nu}_{e}}{\nu_{\mu} + \bar{\nu}_{\mu}}$	124307 2326 0.019 126633	$ \begin{array}{r} 84159 \\ 2546 \\ 0.014 \\ \end{array} $	$71351 \\ 3599 \\ 0.024$	$26334 \\ 590 \\ 0.013$	$ \begin{array}{r} 1440 \\ 77 \\ 0.023 \end{array} $	98404 2889 0.029	405995 12027 0.017
$ \frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}} \\ \frac{\nu_{e} + \bar{\nu}_{e}}{\bar{\nu}_{\mu} + \bar{\nu}_{\mu}} \\ Sum $	124307 2326 0.019 126633	84159 2546 0.014 86705	71351 3599 0.024 74950	26334 590 0.013 26924	$ \begin{array}{r} 1440 \\ 77 \\ 0.023 \\ 1517 \end{array} $	98404 2889 0.029 101293	405995 12027 0.017 418022
$ \begin{array}{c} \hline \nu_{\mu} + \bar{\nu}_{\mu} \\ \hline \nu_{e} + \bar{\nu}_{e} \\ \hline \hline \nu_{\mu} + \bar{\nu}_{\mu} \\ \hline Sum \\ \hline 24m \text{ FHC} \end{array} $	124307 2326 0.019 126633 QE	84159 2546 0.014 86705 RES	71351 3599 0.024 74950 DIS	26334 590 0.013 26924 MEC	1440 77 0.023 1517 COH	98404 2889 0.029 101293 NC	405995 12027 0.017 418022 Sum
	124307 2326 0.019 126633 QE 58198	84159 2546 0.014 86705 RES 28629	71351 3599 0.024 74950 DIS 28071	26334 590 0.013 26924 MEC 10139	1440 77 0.023 1517 COH 562	98404 2889 0.029 101293 NC 41781	405995 12027 0.017 418022 Sum 167380
$ \begin{array}{c} \hline \nu_{\mu} + \bar{\nu}_{\mu} \\ \hline \nu_{e} + \bar{\nu}_{e} \\ \hline \nu_{\mu} + \bar{\nu}_{\mu} \\ \hline \\ $	124307 2326 0.019 126633 QE 58198 1380	84159 2546 0.014 86705 RES 28629 1331	71351 3599 0.024 74950 DIS 28071 1504	26334 590 0.013 26924 MEC 10139 309	1440 77 0.023 1517 COH 562 28	98404 2889 0.029 101293 NC 41781 1552	405995 12027 0.017 418022 Sum 167380 6104

om mic	ЧЦ	TULD	DID	MILO	0011	110	bum
$\overline{\nu_{\mu} + \bar{ u}_{\mu}}$	222747	303875	258150	70278	10492	335411	1200953
$\nu_e + \bar{\nu}_e$	2772	3918	6888	854	136	5089	19657
$rac{ u_e + ar u_e}{ u_\mu + ar u_\mu}$	0.012	0.013	0.027	0.012	0.013	0.015	0.016
Sum	225519	307793	265038	71132	10628	340500	1220610
8m RHC	QE	RES	DIS	MEC	COH	NC	Sum
$\overline{\nu_{\mu} + \bar{ u}_{\mu}}$	126113	149671	139785	37846	5304	178054	636773
$\nu_e + \bar{\nu}_e$	2113	2864	4925	589	98	3664	14253
$\frac{\nu_e + \bar{\nu}_e}{\nu_\mu + \bar{\nu}_\mu}$	0.017	0.019	0.035	0.016	0.018	0.021	0.022
Sum	128226	152535	144710	38435	5402	181718	651026
16m RHC	QE	RES	DIS	MEC	COH	NC	Sum
$\nu_{\mu} + \bar{\nu}_{\mu}$	44689	36717	35908	11119	1278	51358	181069
$\nu_e + \bar{\nu}_e$	1282	1617	2394	345	59	1983	7683
$rac{ u_e + ar u_e}{ u_\mu + ar u_\mu}$	0.029	0.044	0.067	0.031	0.046	0.039	0.042
Sum	45971	38334	38302	11464	1337	53341	188749
24m RHC	QE	RES	DIS	MEC	СОН	NC	Sum
$ u_{\mu} + ar{ u}_{\mu}$	20960	14860	15873	4754	518	22744	79709
$\nu_e + \bar{\nu}_e$	764	889	1125	220	34	1050	4082
$rac{ u_e + ar u_e}{ u_\mu + ar u_\mu}$	0.036	0.060	0.071	0.046	0.066	0.046	0.051
Sum	21724	15749	16998	4974	552	23794	83791


/pnfs/dune/persistent/physicsgroups/dunelbl/ abooth/PRISM/Production/Simulation/ ND_CAFMaker/v7/CAF

On-Axis Leading p_z : n = 1, n = 2, n > 2 **Proton Cases: Cut off/on**

