
Tutorial (Part 1)

Waffles tutorial meeting
05/12/2024

A. Cervera
J. Ureña

(IFIC-Valencia)

Anselmo Cervera Villanueva IFIC-Valencia

Introduction
• Waffles is a software framework, written in python, whose purpose is to

facilitate the PDS data quality assessment and PDS-only performance
evaluation

• Waffles was initially developed for NP04 but with the goal of making it
general enough such that it could be used for NP02 and the FDs

• The main developer is Julio Ureña (IFIC) but had contributions from many
other people

• The git repository:

2

https://github.com/DUNE/waffles
Specific branch for this tutorial

Anselmo Cervera Villanueva IFIC-Valencia

A collaborative effort
• Crucial for the success of this project

• This is realised as follows:

1. Your analysis should be integrated into the main git branch ASAP

• But please follow the the analysis structure and coding conventions

2. No hard distinction between users and developers. Users should become developers:

• The framework is quite light and can be ‘easily’ understood. If you need to do something
that is not available, try to understand how to do it and commit it, such that others can use it

3. Specific analyses are part of the framework such that newcomers can use existing
analyses as reference

4. Utilities developed for a specific analysis should be promoted to general utilities if
they are useful for other analyzers

3

Anselmo Cervera Villanueva IFIC-Valencia

This tutorial
• We had planned a somehow more ambitious tutorial with data people could

run over, event loops, beam information, etc, but didn’t have the time to do
all commits and implement them in the talk

• This talk will be updated with some more info before Christmas and an email
will be sent

• A new tutorial with all this things fixed and more details about the waffles
data models and functionality (e.g. plotting) will be given early next year

4

Anselmo Cervera Villanueva IFIC-Valencia

Table of contents
• Definitions

• Waffles data model

• Framework structure

• The main program and the steering file

• The WafflesAnalysis base class

• Examples of specific analyses:

• LED_calibration (Julio Ureña)

• tau_slow_convolution (Henrique Souza)

• Framework data clases

• Ongoing developments
5

Definitions and Waffles data model

Anselmo Cervera Villanueva IFIC-Valencia

NP04 or ProtoDUNE-HD

7

Anselmo Cervera Villanueva IFIC-Valencia

DAPHNE readout electronics

8

Anselmo Cervera Villanueva IFIC-Valencia

Waveform
• Waffles works with the concept of Waveform

• Which has an array of adc values distributed in time ticks (16 ns width).
NP04 has two times of waveforms:

• APA1: full streaming mode

• APA2-4: self-trigger mode. 1024 time ticks

9

Anselmo Cervera Villanueva IFIC-Valencia

Waffles objectives
• Read the raw data from the detector, in hdf5 format

• Waveforms

• Convert that raw data to the WAFFLES format (python classes)

• Provide tools for managing those waveforms:

• baseline, integration, amplitude, peak finding, denoising, deconvolution,

filtering, selection, charge histogram, S/N, gain etc.

• Plotting the previous results

10

Anselmo Cervera Villanueva IFIC-Valencia

Waffles data model
• The framework provides a series of python classes where the input data can

be saved. For the moment these are the ones we should know about:

• Waveform: array of adc values, time stamps and channel ID

• WaveformSet: a collection of waveforms

11

Waffles structure

Anselmo Cervera Villanueva IFIC-Valencia

Folder structure
• These are the folders are inside waffles

• docs: documentation and examples

• src: the source code of the framework

• scripts: python/bash scripts and c++ code, mainly related with hdf5 decoders

13

waffles/

Anselmo Cervera Villanueva IFIC-Valencia

• This is the folder structure under waffles/src/waffles

Folder structure in src/waffles

14

data_classes plottingutilsinput_output

np04_analysisnp04_data_classes np04_utils np04_data

core

waffles/src/waffles/

np02_data_classes np02_data np02_analysisnp02_utils

NP02 folders

Do not exist yet

Anselmo Cervera Villanueva IFIC-Valencia

Loosing freedom
• In order to allow collaboration between analyzers it is crucial to have some

strict rules to follow. We will have to renounce to some freedom in coding our
analysis in order to gain in transparency. This is realised as follows:

• The way of calling analyses will be always the same. From inside our analysis

folder (a subfolder in np04_analysis)

• The files and folders inside a analysis subfolder will be always the same:

• Code should follow pep8 convention

15

python ../../core/main.py

Analysis1.py
Analysis2.py
…
utils.py
imports.py
params.yml
steering.yml
configs
output
scripts
data

Anselmo Cervera Villanueva IFIC-Valencia

Analysis structure
• These are the files and folders inside a specific analysis subfolder

16

Analysis1.py
Analysis2.py
…

steering.yml

utils.py

params.yml

imports.py

configs

output

scripts

data

Complex algorithms for this analysis should be here
Configuration parameters (numbers, file paths, etc)
All imports needed by AnalysisN.py should be here

It contains the sequence in which AnalysisN.py are run

This is the main analysis code. It could be run in several steps.

The output of Analysis1.py would be input for Analysis2.py

Should be very simple such that the analysis flow can be easily

understood looking at the code

waffles/src/waffles/np04_analysis/my_analysis/

The analysis output should appear in this folder
Folder with configuration parameters that do not change (often)

bash, python, root macros, jupyter notebooks … NOT MANDATORY
Recommended folder for input data. NOT MANDATORY

The main program and the
steering file

Anselmo Cervera Villanueva IFIC-Valencia

steering.yml
• As mentioned above a specific analysis could be performed in several steps

• This file would be equivalent to a bash or python script calling the different
AnalysisN.py files in the folder, but it is better to keep a unified way of doing
that

• By default steering.yml is used but you can use a different steering file, as
explained in the next slide

18

waffles/src/waffles/np04_analysis/
led_calibration/streering.yml

LED_calibration

tau_slow_convolution

Anselmo Cervera Villanueva IFIC-Valencia

The main program
• There are several ways of running a given analysis

• The user can also overwrite parameters
in the params.yml file giving them as
arguments. TO BE EXPLAINED IN A
NEW VERSION OF THIS TALK

19

python ../../core/main.py

python ../../core/main.py -s alt_steering.py

python ../../core/main.py -p alt_params.yml

waffles/src/waffles/core/main.py

use mandatory steering.yml and params.py

use a different steering file

use a different params file

python ../../core/main.py -a alt_Analysis # use a different Analysis algorithm

WafflesAnalysis base class

Analysis1.py
Analysis2.py
…
utils.py
imports.py
params.yml
steering.yml

configs/
output/
scripts/
data/

Anselmo Cervera Villanueva IFIC-Valencia

WafflesAnalysis
• Files AnalysisN.py should contain a class

AnalysisN, inheriting from WafflesAnalysis

• This class has 5 abstract methods, which must be
implemented by the derived class

21

Define command line arguments

Manage command line arguments

and parameters. Do all operations

prior to reading the input file

read one or several input files

Perform the actual analysis

Write the output

waffles/src/waffles/data_classes/
WafflesAnalysis.py

LED_calibration

Anselmo Cervera Villanueva IFIC-Valencia

Introduction
• This analysis happens in two steps:

1. Create the calibration histogram for all channels in one APA and compute the
signal to noise and gain

2. Create plots of S/N vs channel for different OV (PDS) or calibration batches

• But only the first one is adapted to the new framework structure. The
second step will be added soon

• This is the steering file

23

Anselmo Cervera Villanueva IFIC-Valencia

LED_calibration
• This is an example of Analysis1 for the led_calibration analysis

24

waffles/src/waffles/np04_analysis/
LED_calibration/Analysis1.py

Import all necessary files and methods

The Analysis1 class, inheriting

from WafflesAnalysis base class

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: parameters
• These are all the parameters that will appear in the

params.yml file or could be overwritten in the
command line

25

waffles/src/waffles/np04_analysis/
LED_calibration/Analysis1.py

.
.
.

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: initialize
• Parameters created in the previous slide

are passed to initialize method and
saved in a argument self.params

• In this method we do everything it can
be done before reading the input file(s)

26

waffles/src/waffles/np04_analysis/
LED_calibration/Analysis1.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: read_input
• One of several files are read here

• In this case waveforms from
several files are read and saved
into a WaveformSet

• This class will be discussed later,
but it is basically a smart
collection of waveforms

• The method returns True if
reading was successful

27

waffles/src/waffles/np04_analysis/
LED_calibration/Analysis1.py

.
.
.

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: analyze

28

waffles/src/waffles/np04_analysis/
LED_calibration/analysis_1.py

1 2 3

TODO: move to
write_output

IMPORTANT:
Analize all waveforms in
the WS, (see slide 56)

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: write_output
• The output file(s) could be in principle anything

• plot(s) in .png file(s)

• Many plots in a .pdf file

• A collection of waveforms in a pickle file

• A dataframe in a pickle file

• etc

• Some of those files could be input to the next
analysis step

• We are working in a standard way for presenting
analysis results

29

waffles/src/waffles/np04_analysis/
LED_calibration/Analysis1.py

Anselmo Cervera Villanueva IFIC-Valencia

This is the output
• output/df.pkl. with gain and S/N for all 40 channels

• output/apa_3_calibration_histograms.png

30

Other files and folders in the analysis folder

waffles/src/waffles/np04_analysis/
LED_calibration/

Analysis1.py
Analysis2.py
…
utils.py
imports.py
params.yml
steering.yml

configs/
output/
scripts/
data/

Anselmo Cervera Villanueva IFIC-Valencia

imports.py
• Not a very important file but helps in reducing the size of the AnalisisN.py files

32

waffles/src/waffles/np04_analysis/
LED_calibration/imports.py

Anselmo Cervera Villanueva IFIC-Valencia

params.yml
• No hardcoded parameters

(numbers, strings, etc)
should appear in the code
(AnalysisN.py and utils.py)

• All parameters should be
in the params.yml file

• Those parameters can be
overwritten by command
line arguments (need to be
defined in the mandatory
get_input_params_model
method)

33

waffles/src/waffles/np04_analysis/
LED_calibration/parms.py1 2 3

Anselmo Cervera Villanueva IFIC-Valencia

utils.py
• As mentioned before, the code in

AnalysisN.py should be such that the
analysis flow can be easily understood by
reading the code (+ comments)

• That means that heavy algorithmic should
be in utils.py, keeping AnalysisN.py as
small as possible

• On the left one of the methods in utils.py

34

waffles/src/waffles/np04_analysis/
LED_calibration/utils.py

Anselmo Cervera Villanueva IFIC-Valencia

configs
• Configuration parameters that will not be changed frequently

• On the right the folder structure with configurations for this
particular analysis

• It basically tells you which run should be used for a

calibration batch, pde (over-voltage) and channel

• We are working in a standardised way of doing this kind of
things

35

waffles/src/waffles/np04_analysis/
LED_calibration/configs/

tau_slow_convolution

Anselmo Cervera Villanueva IFIC-Valencia

Introduction
• This analysis happens in three steps:

1. Create the average waveform for the
run(s) and channel(s) with what to
analyse

2. Create the average waveform for the
templates used for the run(s) and
channel(s) with what to analyse

3. Perform the convolution fit using the
output from steps 1 and 2

37

fit WFavgresp to WFavgtemp x model

Anselmo Cervera Villanueva IFIC-Valencia

• This is an example of Analysis1 for the tau_slow_convolution analysis

Analysis1.py

38

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis1.py

Import all necessary files and methods

The Analysis1 class, inheriting

from WafflesAnalysis base class

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: parameters
• These are all the parameters that will

appear in the params.yml file or could
be overwritten in the command line

39

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis1.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: initialize

40

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis1.py

Input loop iterates over runs
analyse loop iterates over channels

Configure the algorithm

to compute the

waveform baseline

1
2

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: read_input

41

Current iteration over runs

Read the pickle file and save it into a WaveformSet

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: analyze
• Captures 1,2,3 are one after the other in

the original file

42

waffles/src/waffles/np04_analysis/
tau_slow_convolution/analysis_1.py

1 2

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: analyze

43

3

Anselmo Cervera Villanueva IFIC-Valencia

Analysis1: write_output

44

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis1.py

pickle file with all waveforms

contributing to the average waveform

Pick file with the average waveform

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2.py

45

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

Import all necessary files and methods

The Analysis1 class, inheriting

from WafflesAnalysis base class

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2: parameters

46

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2: initialize

47

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

Input loop iterates over runs
analyse loop iterates over channels

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2: read_input
• WORK IN PROGRESS !!!

• Actually not reading anything since a
double loop is currently not supported
and we want a different file for each
run and each channel

• Temporarily the reading is moved to

analize, where the double loop is
accesible

48

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2: analyze

49

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2: write_output

50

waffles/src/waffles/np04_analysis/
tau_slow_convolution/Analysis2.py

The fit plot

text file containing data frame with fit values

text file fit results and con. matrix

Anselmo Cervera Villanueva IFIC-Valencia

Analysis2 output
• output/results_new_analysis/run025171/convolution_output_25171_26081_ch11114.txt.txt

• output/results_new_analysis/run025171/run_output_25171_26081_ch11114.txt

• output/results_new_analysis/run025171/
convfit_data_25171_template_26081_ch11114.png

51

Framework data classes

Anselmo Cervera Villanueva IFIC-Valencia

• This is the folder structure under waffles/src/waffles

Folder structure in src/waffles

53

data_classes plottingutilsinput_output

np04_analysisnp04_data_classes np04_utils np04_data

core

waffles/src/waffles/

np02_data_classes np02_data np02_analysisnp02_utils

NP02 folders

Do not exist yet

Anselmo Cervera Villanueva IFIC-Valencia

Folder structure in src/waffles

54

data_classes

• BasicWfAna.py
• BeamWfAna.py
• CalibrationHistogram.py
• ChannelMap.py
• ChannelWs.py
• ChannelWsGrid.py
• Event.py
• IODict.py
• IPDict.py
• Map.py
• ORDict.py
• PeakFindingWfAna.py
• TrackedHistogram.py
• UniqueChannel.py
• WafflesAnalysis.py
• Waveform.py
• WaveformAdcs.py
• WaveformSet.py
• WfAna.py
• WfAnaResult.py
• WfPeak.py

plotting

• plot.py
• plot_wfs
• plot_CalibHisto
• plot_ChannelWSGrid
• plot_WfAdcs

• plot_utils.py
• drawing_tools.py
• display

utils

• filtering_utils.py
• numerical_utils.py
• event_utils.py
• utils.py
• check_utils.py
• wf_maps_utils.py
• deconvolution
• denoising
• baseline
• fit_peaks

input_output

• input_utils.py
• pickle_file_reader.py
• raw_hdf5_reader.py
• raw_root_reader.py
• persistence_utils.py

• Bold orange names are folders
• Bullets in white are files .py

• Sub-bullets in yellow are functions inside those files

np04_analysis
• LED_calibration
• tau_slow_convolution

np04_data_classes

• APAMap.py
• …

np04_utils

• utils.py

np04_data

• ProtoDUNE_HD_APA_maps.py
• tau_slow_runs

• beam_runs.csv
• load_runs_csv.py
• purity_runs.csv

Anselmo Cervera Villanueva IFIC-Valencia

Waveform and WaveformSet

55

WaveformAdcsWaveform

WaveformSet

Smart collection
of waveforms

Inheritance

waffles/src/waffles/data_classes/

Mention

Analyse

method de

waveform set

Anselmo Cervera Villanueva IFIC-Valencia

WaveformSet
• A collection of Waveforms

56

read all waveforms from a pickle file and save them in a WaveformSet
wfset = reader.WaveformSet_from_pickle_file (file)

Loop over all waveforms
for wf in wfset.waveforms:

print (wf.endpoint, wf.channel, len(wf.adcs), wf.adcs[0])

waffles/src/waffles/data_classes/

Anselmo Cervera Villanueva IFIC-Valencia

Analysing a Waveform
• A Waveform can be analyzed. This means for example finding the baseline,

the amplitude and the integral

57

WfAna

waffles/src/waffles/data_classes/

WaveformAdcs

Collection of
WfAna

WfAnaResult

Anselmo Cervera Villanueva IFIC-Valencia

Analysing a Waveform: examples
• This is done by calling the analize method of a WaveformSet (see slide 27)

58

WfAnaBasicWfAnaPeakFindingWfAna InheritanceInheritance

Calculates baseline,

amplitud and integral

In addition finds implements

a peak-finding

algorithm based on

scipy.signal.find_peaks()

Anselmo Cervera Villanueva IFIC-Valencia

Detector definition
• We are working on a more general detector definition

• For the moment we use a 2D grid of WaveformSets, which represents an
APA

59

Anselmo Cervera Villanueva IFIC-Valencia 60

WaveformSetInheritanceChannelWs

ChannelWsGrid

A collection

ChannelMap & Map

To be decoupled

Work in progress

Anselmo Cervera Villanueva IFIC-Valencia

Ongoing developments
• Define an Event class that allows clustering waveforms close in time

• Integrate beam information

• A better detector definition that can be used for any detector

• Ability to overwrite single parameters in the steering file

• Documentation exists in GitHub but needs to be updated

• We expect to have all this before Christmas

62

