TMS Calibration

M.A. Acero, G.S. Davies

December 6, 2024

Energy Calibration

- Expected calibration target: 6-8% energy resolution
- Planned procedure
 - Attenuation light curves during QA/QC process for scintillation layers
 - Radiation source at various intervals along bars
 - Provides initial baseline calibration for comparison
 - Cosmic muons Through-going muons as standard candle
- Needed for
 - Accurate energy reconstruction

SiPM Response

- Expected calibration target: Low photosensor noise, light yield sufficient for MIP (TBD)
- Planned procedure
 - Use known light signals or single photoelectron spectra to measure the detector's gain
 - LED Light injection system
- Needed for
 - Correct conversion of light into electrical signals
 - Reducing energy resolution uncertainty
 - Monitor stability of the signal readout

Timing resolution

- Expected calibration target: Few-ns to separate muons in different RF buckets
- Planned procedure
 - Use fast pulsed light sources
 - Cosmic ray coincidence signals
- Needed for
 - Determining time offset and jitter between detector modules
 - Particle identification
 - Event reconstruction
 - Background event rejection

Spatial resolution

- Expected calibration target: X-Y resolution of few-cm. U-V + Y planes to improve Y resolution
- Planned procedure
 - Cosmic muons with known trajectories
 - Movable radioactive source during QA/QC to map the spatial response
- Needed for
 - Track reconstruction
 - Alignment
 - Reducing systematic uncertainties in measurements

Temperature and Humidity effects

- Really this is Slow Controls* in collab. with Calibration
- Expected calibration target: Compensate for environmental factors that affect detector performance
- Planned procedure
 - Monitor temperature, humidity, and apply corrections based on their impact on scintillator light yield, photodetector gain, and electronics
- Needed for
 - Improves long-term stability and ensures consistent performance in varying conditions
 - for example, monitor detector ageing combining calibration and SC info.

*Ensuring the stability, safety, and optimal performance of the detector over longer time scales

Summary

- Data sources at our disposal are the LED flashers, cosmic muons and beam muons
- Emphasize calibration quantity measurements during QA/QC
 - Radioactive source, baseline calibration
- Magnetic field uniformity: open question under investigation
 - Will have installation field maps
- Alignment
 - Cosmics, cross-detector reco., installation measurements
- Dedicated "test beam" calibration in-situ
 - I.e. during Operations

