
Kyle J. Knoepfel
10 December 2024
LArSoft coordination meeting

Developing under Spack: Latest changes to MPD

We have tried different approaches for replacing MRB:

1. FNAL-created spack dev
LArSoft minimum viable product released in 2019; little response from experiments.

2. Spack-provided feature spack develop
More Spack expertise required of users, and substantial inefficiencies in incremental builds.

3. Using Spack environments to only provide access to external software
The work presented here.

Code development using Spack

12/10/24 Kyle J. Knoepfel | Latest updates to MPD2

• Try to give a familiar feel to MRB but retain only those things most commonly used.
• MPD is now a beta-quality product—you are welcome to try it. We are happy

to accept bug reports and pull requests for documentation and for implementation.
• Developers of SciSoft-dependent packages should use the FNAL-provided

bootstrap script, which automatically installs MPD as part of your Spack installation.

Spack MPD https://github.com/FNALssi/spack-mpd

12/10/24 Kyle J. Knoepfel | Latest updates to MPD3

https://github.com/FNALssi/spack-mpd

Spack interactions
• Minimize user’s required knowledge of Spack
• Take advantage of packages installed in upstream Spack environments
• Directly support the installation of dependencies

 This was not feasible with UPS
 Must avoid rebuilding dependencies with existing installations

Usability
• Easy to setup an MPD session
• Easy to switch between my MPD projects

 Avoid reliance on environment variables
• Easy to list which MPD projects are available to me

Desired features

12/10/24 Kyle J. Knoepfel | Latest updates to MPD4

• Presented MPD at CHEP24
• Removed need for explicit environment activation by the user
• Can now install MPD projects as Spack packages/environments
• Support variants and the specification of virtual packages
• Merged package specifications from environments specified at the command line
• Removed under-the-covers Spack repository handling

In the last few months…

12/10/24 Kyle J. Knoepfel | Latest updates to MPD5

Spack MPD commands

12/10/24 Kyle J. Knoepfel | Latest updates to MPD6

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n) create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Spack MPD commands

12/10/24 Kyle J. Knoepfel | Latest updates to MPD7

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n) create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

MRB-like commands
mrb i à install
mrb uc à refresh
. localProducts/... à select

Spack MPD commands

12/10/24 Kyle J. Knoepfel | Latest updates to MPD8

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n) create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

MRB-like commands
mrb i à install
mrb uc à refresh
. localProducts/... à select

Project commands
You can clear a project
selection—i.e. start a fresh
session without restarting a shell.

Spack MPD commands

12/10/24 Kyle J. Knoepfel | Latest updates to MPD9

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n) create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

MRB-like commands
mrb i à install
mrb uc à refresh
. localProducts/... à select

Project commands
You can clear a project
selection—i.e. start a fresh
session without restarting a shell.

Usability
Helper commands exist to let you
know what you’re doing.

Spack MPD commands

12/10/24 Kyle J. Knoepfel | Latest updates to MPD10

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n) create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

MRB-like commands
mrb i à install
mrb uc à refresh
. localProducts/... à select

Project commands
You can clear a project
selection—i.e. start a fresh
session without restarting a shell.

Usability
Helper commands exist to let you
know what you’re doing.

Initialization
Once per Spack instance

• This is an example of how MPD can be used; it is not a tutorial.
• I will develop 3 packages: cetlib-except, hep-concurrency, and cetlib.

Demonstrating how to use MPD to develop software

12/10/24 Kyle J. Knoepfel | Latest updates to MPD11

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD12

$ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-2 cxxstd=20 %gcc@14

==> Creating project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local
Using sources area: /scratch/knoepfel/my-art-devel/srcs

==> You can clone repositories for development by invoking

 spack mpd git-clone --suite <suite name>

 (or type 'spack mpd git-clone --help' for more options)

Create new project

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD13

$ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-2 cxxstd=20 %gcc@14

==> Creating project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local
Using sources area: /scratch/knoepfel/my-art-devel/srcs

==> You can clone repositories for development by invoking

 spack mpd git-clone --suite <suite name>

 (or type 'spack mpd git-clone --help' for more options)

Create new project

Clone repositories $ spack mpd git-clone --fork cetlib cetlib-except hep-concurrency

==> Cloning and forking:

 cetlib done (cloned, added fork knoepfel/cetlib)
 cetlib-except done (cloned, created fork knoepfel/cetlib-except)
 hep-concurrency done (cloned, created fork knoepfel/hep-concurrency)

==> You may now invoke:

 spack mpd refresh

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD14

Refresh project $ spack mpd refresh

==> Refreshing project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local
Using sources area: /scratch/knoepfel/my-art-devel/srcs

 Will develop:
 - cetlib@develop %gcc@14 cxxstd=20 generator=make
 - cetlib-except@develop %gcc@14 cxxstd=20 generator=make
 - hep-concurrency@develop %gcc@14 cxxstd=20 generator=make

==> Determining dependencies (this may take a few minutes)
 ⠇
==> Installing development environment

[+] /usr (external glibc-2.34-mgzp5mjf45pdahg4swhwponbemnk3hmv)
[+] /usr (external glibc-2.34-omul2odw7h4qffee7o63wkjjcmzw2vjr)
 ⠇
[+] /scratch/.../intel-tbb-2021.12.0-cunlldcofd3azuz4urcrzsxbr5vwpodc

==> my-art-devel is ready for development (e.g type spack mpd build ...)

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD15

Build $ spack mpd build -j12

==> Activating development environment (/scratch/knoepfel/my-art-devel/local)

==> Configuring with command:

cmake --preset default /scratch/knoepfel/my-art-devel/srcs ...

Preset CMake variables:

 CMAKE_BUILD_TYPE:STRING="RelWithDebInfo"
 ⠇

-- Found TBB: /.../lib64/cmake/TBB/TBBConfig.cmake (found version "2021.12.0")
-- The C compiler identification is GNU 14.2.0
 ⠇
-- Configuring done (2.2s)
-- Generating done (0.2s)
-- Build files have been written to: /home/knoepfel/scratch/my-art-devel/build

==> Building with command:

cmake --build /scratch/knoepfel/my-art-devel/build -- -j12

 ⠇
[100%] Linking CXX executable ../../bin/regex_t
[100%] Built target regex_t

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD16

Test $ spack mpd test -j12

==> Activating development environment (/scratch/knoepfel/my-art-devel/local)

==> Testing with command:

ctest --test-dir /scratch/knoepfel/my-art-devel/build -j12

Internal ctest changing into directory: /home/knoepfel/scratch/my-art-devel/build
Test project /home/knoepfel/scratch/my-art-devel/build
 Start 1: coded_exception_test
 Start 2: demangle_t
 Start 3: exception_collector_test
 Start 4: exception_test
 Start 5: exception_category_matcher_t
 Start 6: exception_message_matcher_t
 Start 7: exception_bad_append_t
 Start 8: runThreadSafeOutputFileStream_t.sh
 Start 9: assert_only_one_thread_test
 Start 10: serial_task_queue_chain_t
 Start 11: serial_task_queue_t
 Start 12: waiting_task_list_t
 1/100 Test #1: coded_exception_test Passed 0.01 sec
 ⠇
100/100 Test #55: cpu_timer_test Passed 0.55 sec

100% tests passed, 0 tests failed out of 100

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD17

$ spack mpd install

==> Activating development environment (/scratch/knoepfel/my-art-devel/local)

==> Installing developed packages with command:

cmake --install /scratch/knoepfel/my-art-devel/build

==> Installing environment
[+] /usr (external glibc-2.34-mgzp5mjf45pdahg4swhwponbemnk3hmv)
[+] /usr (external glibc-2.34-omul2odw7h4qffee7o63wkjjcmzw2vjr)
 ⠇
[+] /scratch/knoepfel/.../gcc-14.2.0/cetlib-except-develop-f7mbdai7dger5knryqz6inkw4jinuoxo
 ⠇
[+] /scratch/knoepfel/.../gcc-14.2.0/hep-concurrency-develop-tvumszcbf3gg3vistbtahhazkn33jvvc
[+] /scratch/knoepfel/.../gcc-14.2.0/cetlib-develop-lexqohszwojtfkjplmblqji7fxezn5fo
==> Updating view at /scratch/knoepfel/.../my-art-devel/.spack-env/view

==> The my-art-devel environment has been installed.

Install

Development workflow

12/10/24 Kyle J. Knoepfel | Latest updates to MPD18

$ spack mpd install

==> Activating development environment (/scratch/knoepfel/my-art-devel/local)

==> Installing developed packages with command:

cmake --install /scratch/knoepfel/my-art-devel/build

==> Installing environment
[+] /usr (external glibc-2.34-mgzp5mjf45pdahg4swhwponbemnk3hmv)
[+] /usr (external glibc-2.34-omul2odw7h4qffee7o63wkjjcmzw2vjr)
 ⠇
[+] /scratch/knoepfel/.../gcc-14.2.0/cetlib-except-develop-f7mbdai7dger5knryqz6inkw4jinuoxo
 ⠇
[+] /scratch/knoepfel/.../gcc-14.2.0/hep-concurrency-develop-tvumszcbf3gg3vistbtahhazkn33jvvc
[+] /scratch/knoepfel/.../gcc-14.2.0/cetlib-develop-lexqohszwojtfkjplmblqji7fxezn5fo
==> Updating view at /scratch/knoepfel/.../my-art-devel/.spack-env/view

==> The my-art-devel environment has been installed.

Install

my-art-devel can now be used as a base environment for other MPD projects (e.g.):

$ spack mpd new-project --name my-lar-devel -T my-lar-devel -E my-art-devel cxxstd=20 %gcc@14

Other commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack19

$ spack mpd status
==> Selected project: my-art-devel
 Development status: ready
 Last installed: 2024-12-09 15:48:43

Status

$ spack mpd ls

==> Existing MPD projects:

 Project name Sources directory
 ------------ -----------------------------------

 u my-art-devel /scratch/knoepfel/my-art-devel/srcs

Type spack mpd ls <project name> for more details about a project.

List projects

See the documentation at https://github.com/FNALssi/spack-mpd for more info.

https://github.com/FNALssi/spack-mpd

• Each repository you want to develop must have a Spack recipe
The recipe does not need to be part of the Spack mainline repository.
 The bootstrap script adds multiple recipe repositories to your Spack configuration.

If you would like to package a new thing, then spack has tools to help you create a recipe.

• You should not rely on the presence of specific environment variables
Spack recipes can (and do) set environment variables during spack load. But when
developing that code outside of Spack, those variables will need to be set.

• To use Ninja you must specify it as part of the new-project command:

Because the build generator is part of Spack’s concretization, it must be specified before
build time.

Caveats

12/10/24 Kyle J. Knoepfel | Latest updates to MPD20

$ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-2 generator=ninja ...

• MPD is the Spack-based replacement of MRB.
• It is ready for beta-testing.

Pull requests and bug reports at https://github.com/FNALssi/spack-mpd are welcome.

• We are working on things now that are not specific to MPD:
 How to best use upstream Spack instances.

 Why FNAL’s Spack fork results in different concretization than a different fork.

Upshot

12/10/24 Kyle J. Knoepfel | Latest updates to MPD21

Thanks for your time.

https://github.com/FNALssi/spack-mpd

