
A Plan for Standard Builds of LArSoft
Draft version 5

2024-11-25

1 Introduction

For more than 30 years the Fermilab scientific software
stacks have been packaged and distributed using UPS and
related tools. Fermilab specific scripts and procedures
were developed to build several hundred third-party soft-
ware packages (i.e., software created by neither Fermilab
scientific software developers nor by the experiments) into
UPS-compatible forms. Because UPS is a Fermilab-specific
tool, it has been difficult for non-Fermilab personnel to
develop the expertise needed to contribute to building this
software stack. As a result, the time taken to update ver-
sions of software, and to add new packages, is longer than
it would be if the software stack were built and distributed
using more widely-used tools.

In order to make it easier for non-Fermilab personnel to
contribute to our shared scientific software stack, and
because of the diminishing availability of personnel to
maintain support of the specialized infrastructure needed,
we have decided to move to using Spack as the primary tool
for building and distributing the software stack. Because
Spack is supported by a larger community than is UPS,
we will gain the advantage of being able to use the work
of others in the community who have already created
the necessary recipes for building much of the software
we need. We will also gain the advantage that thorough
documentation is available on the web. In addition, it
will be easier for members of Fermilab experiments to add
new recipes for third-party software that they need to use,
and to contribute those additions back to the rest of the
community. Finally, Spack is better placed than UPS to
handle the needs of current and upcoming experiments, as
UPS is very rigid and has high maintenance overhead with
respect to dependency chains, and has other limitations
with regards to issues such as relocatability and release
distribution.

In this document we describe a plan for how to make use of
the software built, packaged, and distributed using Spack
and related tools. The goals of this plan are several:

1. To allow the SciSoft team to build, package, and dis-
tribute to the experiments the software the team de-
velops or contributes to, including the art framework,

LArSoft, and the new framework being developed for
DUNE.

2. To provide the experiments greater flexibility in build-
ing software not provided in the suite of products
delivered by the SciSoft team, while also providing a
clear path for sharing effort between experiments.

3. To provide more flexibility for experiments to support
building their software stack on platforms on operat-
ing systems not directly supported by Fermilab, for
example, at supercomputing facilities.

A central feature of the new plan is what we call a standard
build, described in the next section.

2 Definition of a Standard Build

The move away from UPS to Spack is intended to make it
easier for non-SciSoft personnel to make their own builds of
software stacks. At the same time, the SciSoft team must
retain the ability to build and test LArSoft, which requires
building and testing the software stacks that depend upon
LArSoft. Separately, the SciSoft team will also need to be
able to build and test the software stack for the new DUNE
framework. The framework for allowing these distinct
efforts to proceed relies on the idea of standard builds. All
builds of LArSoft (and of art) that will be produced by
the SciSoft team will be these standard builds. The “data
management” software stacks will need to package data
management clients, etc., so they do not have conflicting
dependencies with the scientific software stacks. It is
inconvenient for users of the data management tools (e.g.,
rucio-clients, sam-web-client, etc.) to have to “unsetup”
their experiment’s software environment in order to “setup”
the data management tools. Having the tools built with
the same underlying libraries will allows them to be active
in the same shell session.

We distinguish two types of standard builds:

1. A standard build of a package (usually consisting of all
the software in a single repository, e.g., for LArSoft),
which is built with a specific set of variants1. For ex-

1In Spack, a variant is a way to specify build options or configura-
tion choices for a package. Variants allow the user to customize
how a package is built and installed, giving flexibility to enable

1



ample, if one experiment requires ROOT with support
for Apache Arrow, and another requires support for
Graphviz, then the standard build of ROOT would
include both the Apache Arrow and the graphviz
options in the standard build. It will be up to the
collaborating LArSoft experiments to determine the
set of options to be included in the standard build of
each package.

2. A standard build of a suite, which is comprised of
consistent standard builds of all the packages in the
suite. The SciSoft team will create a Spack environ-
ment for each standard build of a suite. All stan-
dard builds of packages that are part of a suite will
be pushed to an appropriate binary build cache2

and also installed in CVMFS. The SciSoft team
will make available environment definition files for
each standard build of a suite through CVMFS, or
https://scisoft.fnal.gov, or both.

3 The Plan for Standard Builds and Releases

Here we describe the “steady state” plan for releases, the
standard builds that will be created for each release, and
guidance on how the experiments should use them. Some
adjustments to the process might be needed during the
transition from UPS to Spack.

1. New releases will be created when one of the LArSoft
experiments or the SciSoft team submits a success-
ful pull request (PR) on one or more of the LArSoft
repositories, or when one of the underlying dependen-
cies is updated, which may occur at the discretion
either of the experiments or the SciSoft team. The
code of the experiment making a release request must
be consistent with the current LArSoft release.

PRs from experiments to recipes for 3rd party pack-
ages, and to the art and LArSoft packages will be
welcomed. The procedure for handling such PRs will
be described in a separate document.

2. For each new release of the art or LArSoft suites,
the SciSoft team will create a number of standard
builds. Each of these builds will use a specific, single
source code version for each of the packages in the
software stack. First-party software will be built in
both debug and profile modes. Third-party packages
for which debug builds are useful will also be built in
both debug and profile mode. Others will be built in

or disable certain build options and configuration choices, choose
dependencies, or set specific configuration parameters.

2A binary build cache, often shortened to build cache, is a location
in which pre-built libraries, etc., are kept in the form of tarballs.
A spack install command command can download and untar
the already-built package, rather than downloading source code
and building the package.

release mode only (i.e., in the native build mode for
the package). Each package will be built using a small
number of supported compilers (and specific versions
of those compilers). The LArSoft collaboration and
the SciSoft team will together decide on compilers to
be supported.

3. A Spack environment will be created corresponding
to each standard build. Users of the standard builds
will be able to use spack env activate (or the alias,
spacktivate) to activate the standard environment,
and also build their software against that standard
environment. Users who are developing all or part
of LArSoft itself will be able to set up the standard
environment, then build the relevant parts of LArSoft
in addition to their own experiment’s software stack.

4. Experiments that are part of the LArSoft collabora-
tion should use standard builds, preferably one of the
most recent, as the base for their own development
builds. Doing so makes it possible to test new releases
of LArSoft against the experiment code. If an experi-
ment builds does not use a standard build of LArSoft,
then testing by the SciSoft team becomes infeasible,
which risks wasting effort creating standard builds
that do not work.

5. Experiments that are part of the LArSoft collabo-
ration are encouraged to use one of the standard
builds as a base for their own production builds. This
need not be the most recent standard build, since the
pace of releases for production is determined by other
factors than the pace of the releases of the LArSoft
suite.

6. Experiments may choose to build alternative builds
of LArSoft. The SciSoft team will be available for
consulting on such builds on a best-effort basis.

4 The use of the LArSoft and Experiment CI
systems to verify LArSoft Releases

Changes to LArSoft code are made via PRs to the relevant
repositories. PRs that pass a review and testing process
are merged into the main body of code, where they can
be tagged and used in a release. The review process uses
the CI system to trigger builds and two phases of tests
that are built into each of the LArSoft and experiment
code repositories. (In the following, we refer to the build
and tests collectively “CI tests”.) As in the past, the
SciSoft team will rely on the results from these CI tests
to determine whether the pull request behaves in the
expected way. Only when test results are understood can
PRs be accepted. Details of the CI testing process, the
conditions that must be met for a PR to be accepted, and

2



the responsibilities on various parties in maintaining the
tests are described below.

1. The SciSoft team will use the LArSoft CI system to
build and test the development head of each LArSoft
repository as needed, such as when triggered by a PR
to a LArSoft repository from any source (the experi-
ments or SciSoft).
Each PR or collection of associated PRs to LArSoft
repositories must pass all CI tests for all LArSoft
repositories. In addition, PRs must meet a set of
additional requirements before they can be accepted.
Those additional requirements will be proposed, doc-
umented and maintained separately by the SciSoft
team. It is the responsibility of the submitter of the
PR to fix test failures address issues related to the
other requirements, or to arrange to have them fixed.

2. Once the CI tests for LArSoft are passed, the CI tests
for each experiment that uses LArSoft are run. As in
the case of the LArSoft CI tests, all CI tests for all
experiments must succeed for a PR to be accepted. It
is the responsibility of whatever experiment submitted
or requested the PR to fix CI test failures or make
arrangements to have them fixed.

3. Note that commits to an experiment’s repositories,
and not only changes to LArSoft, might break that
experiment’s CI tests. It is the responsibility of each
experiment to maintain their CI system by keeping the
branches of the repositories they use for development
up-to-date with the development head of LArSoft. If
an experiment does not keep their CI tests up-to-date
with the most recent release of LArSoft, or that branch
otherwise becomes incompatible with the most recent
release, then their CI tests will be removed from the
workflow of the CI system used to verify new PRs in
LArSoft. It will be re-enabled in the workflow as soon
as the experiment updates their code to work with
the most recent release of LArSoft.

4. Bug fix PRs for old releases of LArSoft can be ac-
cepted for declared production releases of LArSoft
only. A PR that fixes a bug in a production release
of LArSoft will be merged into the bug-fix branch for
that release only if the CI tests for the production
release of LArSoft and the experiment passes, or the
PR breaks no CI tests that passed immediately before
the PR. Each experiment is expected to keep a branch
in their own repositories for CI testing of bug fixes
for each of the LArSoft production releases they use.

5 How we will organize Spack environments

5.1 Layered spack environments

The SciSoft team will create layered spack environments
for our own use and for the use of the experiments. This is
the technique we use to control what spack will attempt to
build for each environment. By installing a consistent set
of packages into a given layer, we ensure the use of those
packages in all “higher level” environments, while still
allowing experiments to replace any portions of the the
dependency graph of packages when they have a special
need to do so. Figure 1 shows for illustrative purposes how
spack environments might be layered. A description of
the layers shown in this figure is provided below. Details
of the layers and their contents may change in the final
implementation. Note that the packages that are named
are for illustration only; they are not exhaustive.

substrate

tools

fifeart

nulite

larsoft

experiment

Figure 1: An illustrative example of the proposed spack
environment layers. Note that art, fife and nulite
are also used by experiments and projects that
do not depend upon LArSoft. The final imple-
mentation may differ.

1. The tools layer includes tools that are used for devel-
opment. Examples include compilers, git, cmake, and
ninja.

2. The substrate layer includes products for which we
(CSAID) are not in control of the source code. Ex-
amples include ROOT, Geant4, and Catch2. Python
should probably be included here because some code
needs to link against the libpython.so.

3. The art layer includes all of the products that are cur-
rently part of the critic suite. These are all products
that are developed by the SciSoft team.

4. The fife layer includes products, excluding art, needed
to build higher-level layers, along with data manage-
ment and authentication client packages. These prod-
ucts are developed by other groups in CSAID. One
example is ifdhc.

3



5. The nulite layer includes products that are needed
to build larsoft but which are not part of art or fife,
and which are controlled by other groups in CSAID.
Examples are ifdh_art, GENIE, and nusimdata.

6. The larsoft layer includes all of the LArSoft products.

7. The experiment layer indicates the software of one
LArSoft-using experiment, and any 3rd party prod-
ucts that are used only by that one experiment. Each
experiment layer is independent of other experiment
layers.

5.2 Building and distributing layered
environments

The SciSoft team will be responsible for building and
distributing releases of the tools, substrate, and art lay-
ers, while the Data Management team will be responsible
for building and distributing the fife layer. Releases of
tools and substrate will be made as needed in response
to requests for newer version of packages in those layers.
Updates to the tools layer will be made in response to
requests from experiments or the SciSoft team, not auto-
matically when new versions of the source code for those
packages are released. Updates to the substrate layer will
be made in response to requests from experiments or the
SciSoft team, or when needed to support new versions of
higher-level layers. The requesting party (experiment or
the SciSoft team) is responsible for demonstrating that
the update is self-consistent in that the updated substrate
builds without error. The requesting party is also respon-
sible for demonstrating that the higher-level layers also
build and pass CI tests without error.

Updates to the art layer will be made as needed, either
because of new versions of tools or substrate, or due to
pull requests for bug fixes or new features in the art suite.
The SciSoft team will remain responsible for ensuring that
the art layer builds and passes CI tests without error.

The SciSoft team will build and distribute releases of the
fife layer, if needed, or reuse recent builds from Data
Management, who will be responsible for maintenance of
the code for the packages in that layer. Similarly, the
SciSoft team will build and distribute releases of the nulite
layer, but maintenance of the code for the packages in
that layer remains the responsibility of the authors of that
code.

The SciSoft team will build and distribute releases of the
larsoft layer as described above.

Each experiment retains the responsibility for building
and distributing its own experiment layer.

It is not yet determined whether a given Spack installation
would host multiple layers and/or releases of same, and

what the complications/advantages of such might be. It
is also not yet determined how many binary build caches
we will need and when different caches should be used.

6 Other Notes on the Use of Spack

Because spack has not yet reached the 1.0 release, back-
wards compatibility is not guaranteed when moving to a
new version of spack. The 1.0 release of spack is expected
within the calendar year. At least until that release, we
expect that upgrades to spack will require re-building a
full new software stack.

In order to reduce unnecessary rebuilding of the soft-
ware stack, experiments are encouraged to use either the
appropriate Spack installation from CVMFS, or to use
SciSoft-provided scripts and/or procedures to produce an
appropriately versioned, patched (where necessary), and
configured Spack installation.

4


	Introduction
	Definition of a Standard Build
	The Plan for Standard Builds and Releases
	The use of the LArSoft and Experiment CI systems to verify LArSoft Releases
	How we will organize Spack environments
	Layered spack environments
	Building and distributing layered environments

	Other Notes on the Use of Spack

