Recent progress on DUNE's solar parameter sensitivity at LAPP

Andrés López Moreno (Me) Luis Manzanillas Maël Martin

Recent progress on DUNE's solar parameter sensitivity at LAPP

Neutrino fluxes from solar model (AGSS09)

Neutrino fluxes from solar model (AGSS09)

Cross sections from MARLEY

103

101

1016

10 9 () 10 °

10 4

10 *

10 *

10 1 L

⁷Be

±10.5%

(cm-2 10 '

Cross sections from MARLEY

P 🖪 🖌

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

6

103

101

1016

10 9

10 XnL 10

10 4

10 8

10 *

10 1

() 10 °

ų 10 '

, may

Normalised Etrue spectrum

Laboratoire d'Annecy de Physique des Particules

Laboratorie d'Annecy de Physique des Particules

Unable to separate θ_{13} without measuring the vacuum regime.

Consider 3 scenarios:

- **Free θ**₁₃
- θ₁₃ < 15°
- θ₁₃ as given by the PDG's global reactor measurement (~ 2 flavour fit)

CC only: 95% credible regions

NO EXPERIMENT

ES only: 95% credible regions

EXPERIMENT

Combined channels: 95% credible regions

Sensitivity

Conclusions

- DUNE should be able to perform excellent measurements of the solar neutrino parameters when combining the ES and CC channels, given we achieve a threshold of $E_{reco} \sim 3MeV$
- Although the CC channel has larger statistics, the cross section vanishes at $E_{true} < 4.7$ MeV, obscuring the region of highest sensitivity
- As things stand, our sensitivity is driven by the ES channel, which can be boosted by using scattering angle information
- For the CC channel to be useful, we need to reduce the neutron background from radioactive decays in the surrounding rock

Many thanks

PS:All this work was done using an MCMC fitter I wrote in Julia, and it is available at https://github.com/AlopezMoreno/DUNE_SolarOscFitter.

It is easy to use and should allow you to generate similar contours to the ones I showed. It is still a work in progress

Backups

CC only: RC, with and without backgrounds

ES only: free, without and with directional reconstruction

Corner plots

Contributions to the combined fit with directional reco: CC (left) and ES (right)

Combined fit with directional reco (left), ES contribution (right):

