Understanding solar ES signals and their backgrounds

Low Energy Physics Meeting - DUNE

Andrés Lopez Moreno - Luis Manzanillas - Maël Martin

12/11/2024

Low energy signals in DUNE

⇒ Estimation of the different signals : Solar neutrinos, neutron & cosmogenic backgrounds

Solar neutrino flux :

CC chanel events : B8 \Rightarrow 215 000 & Hep \Rightarrow 1 200 (for 100kton*year \approx 10kton*10years)

Background :

Neutron background : $\approx 2.13^{*}10^{9}$ neutron captures in LAr /100 kt *year

 \Rightarrow Much higher than the neutrino flux

Cosmogenic Background \Rightarrow Important below 5 MeV and equivalent to Hep above 12 MeV

Energy spectra of the different signals (former cluster method)

⇒ Reduction of the background by different methods

⇒ Implement a shielding around the detector
 ⇒ Apply a fiducialization on the active volume

Energy spectra of the different signals, with 40cm Water shielding & 1m fiducialization (new cluster method)

Cluster algorithm for energy reconstruction

Former method :

Take energy deposit one-by-one

If there is less than 1cm between the deposit and the next one
 ⇒ creation of a cluster and sum the deposited energy

Bug : Two clusters can be created next to each other if theirs deposits are not save one after another in the data file

New method : DBSCAN (Clustering.jl)

Take all energy deposits of an event with :

dbscan(spatial_coords, radius, min_neighbors=1, min_cluster_size=1)

- Clusters are created if there is less than X cm between at least two deposits, regardless the order in the data file

Deposits with the same color are in the same cluster

Cluster creation and neutrino energy reconstruction of ES signals

Neutrino energy : cluster with the higher energy

- Evolution of the difference between the most energetic cluster and the initial energy of the electron for the ES channel :
- Smaller and smaller when the radius increase
 - ⇒ electron track is complete and the gammas created by bremsstrahlung are added to the cluster energy

Average number of clusters as a function of the radius used in the DBSCAN algorithm

Difference between the most energetic cluster and the initial energy of the electron for ES interaction, as a function of the radius used in the DBSCAN algorithm

Number of ES events in DUNE

N = $\Sigma \phi_{\nu} * \sigma_{ES} * n_{e}$

φ_ν ⇒ Predicted B8 flux : 5.25*10⁶ cm⁻².s⁻¹⇒ Measured B8 flux : 2.315*10⁶ cm⁻².s⁻¹ (2312.12907)

 $\sigma_{ES} \Rightarrow$ Cross-section of Elastic Scattering (Fundamentals of Neutrino Physics and Astrophysics) :

 $n_{e-} \Rightarrow$ Number of electron in the active volume

Verification of our calculation with the number of events in Super-Kamiokande :

 \Rightarrow 3.5 MeV Energy threshold cross section $\sigma_{_{\rm ES}}$

 $\Rightarrow \approx 1.1^{*}10^{34}$ electrons in the water volume

Number of B8 events in SK (per day) :

 \Rightarrow ≈ 65.443 in paper \Rightarrow ≈ 63.390 computed

Calculation of the number of events in DUNE

⇒ cross section σ_{ES} with no energy threshold ⇒ ≈ 2.7*10³³ electrons in 10kton of LAr

Number of ES events in DUNE with MSW effects

Cluster discrimination for ES events

Apply condition on event selection :

- Most of electron tracks of ES event are continuous and without any deposit around
- \Rightarrow Select only most energetic cluster without other cluster in a distance of x cm

Energy deposits after ES interaction

Energy deposits after ES interaction

Event that can be rejected

Cluster discrimination for ES events

background rejected (green)

- \Rightarrow The signature of ES event is a continuous track for most of the cases
 - In around 29.0 % bremsstrahlung gammas produce other energy deposits
 - With a radius of 2.5 cm used in the DBSCAN algorithm, most of the electron energy deposits are in the same cluster
- \Rightarrow Most events have only one cluster thus the condition is respected

Few ES events are deleted **BUT** almost all Neutron events are rejected !!

 \Rightarrow For a 50 cm distance : **74.4 %** of ES events are kept and **99.7 %** of background events are removed

 \Rightarrow Important reduction of the background with this method

 \Rightarrow Possibility to **observe** the ES B8 flux because the neutron background becomes smaller

Energy spectra after selection, with a 40cm water shielding and a fiducialization of 1m and a discrimination distance of 50cm

Reconstruction of CC events

 \Rightarrow The signature of CC event is a continuous track for the electron and several energy deposits for the gammas

 \Rightarrow With a maximum distance of 2.5cm, all deposits cannot be in the same cluster

 \Rightarrow With the same condition of discrimination, numerous CC events are deleted

Rates of events saved (blue and cyan) or rejected

green

Energy deposits after CC interaction

fiducialization of 1m and a discrimination distance of 50cm

⇒ Possibility to differentiate the CC and ES events

Conclusion

⇒ DBSCAN clustering algorithm seems to be an efficient and realistic approach for solar neutrino reconstruction

 \Rightarrow Estimation of number of ES events in 100kt*year to simulate the signal of this interaction

 \Rightarrow Apply discrimination conditions to select only ES events :

- By using signals isolated within a sphere of 50 cm :
 - The neutron background is significantly reduced by 99.7 %
 - Only 25.6 % of ES events are lost
 - Detecting CC events under the same conditions is not possible
- **However**, the same method can be used to effectively separate ES from CC signals

Energy spectra after selection, with a 40cm water shielding and a fiducialization of 1m and a discrimination distance of 50cm

Thank you for listening

Backup

Stopping power of Argon for electrons

Backup

Ci

Energy spectra of the B8 flux oscillated, with 40cm Water shielding & 1m fiducialization

Energy spectra after selection, with a 40cm water shielding and a fiducialization of 1m and a discrimination distance of 50cm. The B8 flux used is oscillated.

