LOWE FLASH RECONSTRUCTION & FLASH-MATCHING

HD Geometry (dune10kt_1x2x6) Sergio Manthey Corchado

Motivation

Flash Reconstruction for LowE Neutrino Events:

- **TPC PDS matching is required** to reconstruct the drift-coordinate of low energy interactions allowing **improved calorimetry** and **3D fiducialization**.
- **Current standard implementation of OpFlash fails** to produce pure objects for low energy events due to the presence of background.
- Impure OpFlashes are badly reconstructed and lead to an inefficient matching that fails frequently (> 80%) due to the presence of competitive bkg. OpFlashes (up to 4000 per event).
- Up to now there is **no flash-matching strategy implement in larsoft**. Only <u>FlashMatchAna_module</u> exists but does not attempt a proper TPC PDS match, it only associates reconstructed signal OpFlashes to their truth particle interaction vertex.

This work aims to implement a flash reconstruction and a flash-matching algorithm for low energy events allowing a **full 3D reconstruction** for the region of interest in **solar neutrino studies** (4 - 30 MeV).

This Work

- Start evaluating HD geometry (dune10kt_1x2x6). Results for VD will follow!
- Study the **distributions of OpHits** (<u>number</u>, <u>adjacency</u>, <u>PE</u> & <u>MaxPE</u>) for **signal events**.
- OpHits on their own don't carry information to distinguish signal from bkg. Need higher order object:
 OpFlash → collection of OpHits with commonly reconstructed variable (time, charge, vertex...).
 - LowE OpFlashes should be sharper (in time) and smaller (in footprint) than standard (high energy). <u>Flip-Flop</u> algorithm clusters OpHits by time and distance to create <u>SolarOpFlash</u>.
- Study the **distribution of signal OpFlashes** (<u>number</u> & <u>weighted distributions</u>).
- With defined <u>parameters</u> evaluate generated set of <u>MainOpFlashes</u> (OpFlashes with highest number of PEs per event) in the context of full background.
- For a given TPC cluster, all OpFlashes with $\Delta T < MaxDriftTime$ are candidates for association (matching). Find additional <u>cuts</u> to minimize bkg. candidates.

 $^{*}\Delta T = TPC_Time - PDS_Time$

	Hit	OpFlash	Matching	Efficiency
Before this work.	Standard OpHit*.	Standard larsoft OpFlash based on DBSCAN.	No TPC - PDS matching strategy exists for lowe.	< 20%
With this work.	Standard OpHit*.	Specific <u>SolarOpFlash</u> for low energy point-like interactions based on (<u>flip-flop</u>).	Strategy based on tight vertex reconstruction and maxPE criteria.	~ 80%
After this work.	Standard OpHit*.	Updated <u>SolarOpFlash</u> with centroid vertex computation for VD.	Updated matching criteria for a better likelihood-based algo.	???

*Already tuned for low energy during deconvolution studies.

Neutrino Production

Isotropic flat CC neutrino spectrum 4-30 MeV

OpHit Distributions

- OpHits: Reco signals of the PDS raw wvfs (> 1.5 PE). Characterised by their charge in units of Photo Electron (PE), the channel (X-Arapuca) location in 2D space (*Y, Z coordinates) and their Time (tick).
- OpHits from low energy neutrino signals arrive to the PDS plane with a **lowering #PE** count, a very **sharp scintillation peak** (< 0.25 µs) and a wide **surface coverage**.
- Better to evaluate the weighted response to tune clustering parameters (see next <u>slide</u>).

*In VD XAs surround the active volume (in HD all XAs on the same plane) \rightarrow their 3D location needs to be considered .

OpHit Sample: #Number and Weighted Distributions

• Found ~240 OpHits per neutrino event for which the PE weighted Time peaks at 0.6 tick with an asymmetric distribution ([peak - 0.6, peak + 1] tick) and the R distribution peaks at 150 cm with OpHits reaching up 300 cm in projected True Neutrino - PDS vertex distance.

y Tecnológicas

OpHit Sample: Max and TotalPE Coordinate Scan

- Evaluate total number PEs per event (TotalPE) & OpHit with the maximum PE count (MaxPE).
- MaxPE distribution decreases stronger than TotalPE, outside 1m in drift coordinate, value falls below 10% while TotalPE only reduced by 50% → Probable reason why density based standard algorithm (using <u>DBScan</u>) fails to produce pure samples.

OpFlash Sample: #OpHits and Weighted Distributions

- Weighting the OpFlash sample according to their $\#PE \rightarrow better estimate of their properties.$
- PE weighted Time peaks at 0.6 tick (same as OpHits)
- R distributions peak at 40 cm with shorter tail wrt. OpHits. → **expected improvement** due to the combined information (weighted average of Y & Z coordinates) of all OpHits in the OpFlash.

Result: Clustering Parameters from Signal Production

- Flip-Flop algorithm clusters OpHits around a trigger OpHit (with #PE > Adj. OpHit #PE) up to a tunable radius *R and for a certain tick interval [t_i, t_f].
- OpHit clustering parameters (see <u>slide</u>):
 - Cluster OpHits around trigger OpHit with relative time [-0.6, 1] tick.
 - Cluster OpHits around trigger OpHit up to **300 cm** in radial distance *R.
- OpFlash signal thresholds (see <u>silde</u>):
 - Final cuts be tuned in the context of background, for now signal threshold:
 - OpFlashes should be made of at least 3 OpHist.
 - OpFlashes should be found within ~300 cm of projected distance **R.

*R = sqrt((Trigger Y - Adj. Y)² + (Trigger Z - Adj. Z)²) **R = sqrt((True Y - PDS Y)² + (True Z - PDS Z)²)

Wbkg Production

Isotropic flat CC neutrino spectrum 4 - 30 MeV + full standard centralAPA bkg.

MainOpFlash Sample

- Evaluate MainOpFlash (highest PE per event) by separating out the ones with *purity > 0 as signal.
- Found **biggest flash in the event coming from signal in only 15% of the events** (rest is **bkg.**).
- Most signal OpFlash have > 10 OpHits.

*purity evaluated in SolarNuAna. Defined as fraction of OpHits per OpFlash backtracked to signal.

MainOpFlash Sample

- Need to cut on OpFlash variable to reduce choice for any given TPC cluster \rightarrow easy cut on *R.
- $\Delta Y \& \Delta Z < 100 \text{ cm}$ conserves 99% of signal flashes.

*R = sqrt((True Y - PDS Y)² + (True Z - PDS Z)²)

Result: Cuts from Signal+Background Production

- OpHit clustering parameters (see <u>slide</u>):
 - Not updated in the context of background.
- OpFlash cuts (see previous <u>slides</u>):
 - OpFlashes should be found within **R** ~**141 cm** of projected distance (Δ Y > 100, Δ Z > 100 cm).
 - OpFlashes should be made of at least **10 OpHits** (used as matching criteria).

- In the following we attempt proper matching: evaluating AdjOpFlashes (~40 per event) within the vicinity of a signal TPC cluster *R, from which we select only one MatchedOpFlash to reconstruct the drift coordinate (X) for a given TPC cluster.
- Current strategy selects AdjOpFlash with highest #PE after adjacency and #OpHit cuts.

*R = sqrt((TPC Y - PDS Y)² + (TPC Z - PDS Z)²)

MatchedOpFlash Sample: Background vs Signal

• After choosing from AdjOpFlash the MatchedOpFlash → signal dominates!

Results: Matching Efficiency (centralAPA bkg config)

- Efficiency **#correctly matched events / #events*** (correct match = match to OpFlash with purity > 0).
- For reference, solar event (15 MeV, +3Hits) interacting @ drift coordinate 150 cm has a 80% chance of correct match.

Results: Matching Efficiency (centralAPA bkg config)

- Very good overall performance compared to previous results (< 20%)!
- Efficiency for low energy region needs to be defined as a function of **neutrino energy** and **drift coordinate**.

Results: 3D Reconstruction

- Evaluate **cumulative error distributions** defined as **abs(True Reco)**.
- Scope of full 3D reconstruction: for subsample of 10 20 MeV **85% of matched TPC** clusters have a drift coordinate reconstruction that agrees **within < 7 cm** wrt. **true neutrino interaction**.

Summary & Next Steps

- OpHit clustering, OpFlash reconstructing and PDS-matching algorithms has been implemented in larsoft for low energy events in the context of background.
- **OpHit clustering parameters have been updated** to improve signal efficiency wrt previous results.
 - Asymmetric time limits wrt. trigger hit have been implemented in Flip-Flop algorithm.
 - OpHit R-adjacency parameter could be fine-tuned to reduce #PE in bkg flashes.
- Presented **OpFlash cuts** successfully **remove most bkg flashes**.
- Current settings successfully match > 95 (80, 50) % of 15 MeV neutrinos in the first (second, third) drift meter.
- Previously presented **Residual discriminator is not favouring** the signal OpFlash topology.
 - Need to improve residual discriminator (currently using **#highest PE approach**).
- Additional **fine-tuning** could further improve these results.
- Apply reconstruction to solar neutrino sensitivity studies. Improve algorithms for VD geometry.

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Low Energy Clustering

- Reconstructed wirecell hits: col. plane + ind.
 plane matching (at least 1).
- Matched col hits grouped into clusters according to time & wire proximity (25 tick & 3 channels) ensuring cluster purity.
- Clusters divided into "Primary" and "Adjacent" (R adj cl. < 1m & charge adj. < charge primary).

- **Detection Efficiency**: Probability of finding **at least 1 primary cluster per event**.
- Important to look for low hit multiplicity in the context of low energy interactions.

Result: Configuration (SolarOpFlash.fcl)

- Presented results lead to the following configuration for the flip-flop algorithm to generate the SolarOpFlashes.
- 1. Avoid unnecessary large output.
- 2. 3. Adjust to scintillation time profile.
- 4. Minimize background

contamination.

- 5. 6. Reduce flash-noise.
- 7. 8. Improve vertex reconstruction.

<pre>solar_opflash_dune10kt_1x2x6: { OpHitLabel: "ophit module_type: "Solar</pre>	spe" # T OpFlash"	
Geometry: DetectorSizeX: DetectorSizeY: DetectorSizeZ: DetectorDriftTime:	"HD" 360 600 1400 4500	
<pre>1</pre>	3 0.60 1.00 300 1.5 1.5 0.3 <i>false</i>	# Min number of hits to consider a flash. Change to > 3 for bkg productions. # Negative time window to look for adj. OpHits in [tick] units. # Positive time window to look for adj. OpHits in [tick] units. # Distance to look for adj. OpHits in [cm] units. # PE threshold to look for adj. OpHits. # PE threshold to trigger an OpFlash. # Relative threshold to consider a hit as hot for opflash vertex determination [0-1]. # Use the centroid computation of the flash based on a likelihood estimation.
solar_opflash_dunevd10kt_1x8x1 solar_opflash_dunevd10kt_1x8x1 solar_opflash_dunevd10kt_1x8x1 solar_opflash_dunevd10kt_1x8x1 solar_opflash_dunevd10kt_1x8x1 solar_opflash_dunevd10kt_1x8x1	4_3view_30de 4_3view_30de 4_3view_30de 4_3view_30de 4_3view_30de 4_3view_30de 4_3view_30de	g: @local::solar_opflash_dune10kt_1x2x6 g.Geometry: "VD" g.DetectorSizeX: 340 g.DetectorSizeY: 680 g.DetectorSizeZ: 2100 g.DetectorDriftTime: 8000

*Notice 8. OpFlashAlgoCentroid option still needs to be implemented. Probably needed in VD OpFlash reconstruction.

OpFlash Sample: #OpFlashes per Neutrino Energy & Drift

- Construct OpFlash from collection of OpHits using clustering parameters (summarized in <u>slide</u> with flip-flop algorithm), produced up to ~6 flashes on average, while ensuring at least 1 OpFlash for the lowest neutrino energy (4 MeV) at the furthest away drift coordinate (360 cm).
- Perform energy and drift coordinate scan of the number of OpFlashes per event (#OpFlashes).

Tecnológica:

AdjOpFlash Sample: #AdjOpFlashes per TPC Cluster

• After proposed clustering <u>parameters</u> and <u>cuts</u>, still ~40 bkg. candidates for any given signal TPC cluster.

AdjOpFlash Sample: Background vs Signal

• Still AdjOpFlash sample dominated by bkg. with only **slight differences in #PE and #OpHits**.

Current Analysis Module (SolarNuAna.fcl)

- **Matching analysis** performed within the **SolarNuAna_module** (currently only module) allowing to collect both TPC and PDS info as well as all the relevant backtracked and truth info.
- Module also allows to generate SolarOpFlash "on the fly" if object not already existent in art/root.

1. Set to drift-window of the geometry.

2. 3. Adjust to PDS vertex deviation.

4. MaxPE/PE ratio cut for OpFlashes.

5. Min OpFlash PE cut.

6. Min #OpHit per OpFlash cut.
7. Decide to ditch previously presented matching based on residual in favour of MaxPE discrimination. Better strategy

needs further investigation.

	GenerateAdjOpFlash: OpFlashAlgoNHit: OpFlashAlgoMinTime: OpFlashAlgoMaxTime: OpFlashAlgoRad: OpFlashAlgoPE: OpFlashAlgoTriggerPE: OpFlashAlgoHotVertexThld: # 0111 GenerateAdjO	false 0 0.60 1.00 1.5 1.5 0.3 DPFlash	<pre># Generate OpFlashes. # Min number of hits to consider a flash. Change to 3 for bkg run to avoid huge output. # Negative time window to look for adj. OpHits in [tick] units. # Positive time window to look for adj. OpHits in [tick] units. # Distance to look for adj. OpHits in [cm] units. # PE threshold to look for adj. OpHits. # PE threshold to trigger an OpFlash. # Relative threshold to consider a bit as hot for opflash vertex determination [0-1]. → Create SolarOpFlash from within analysis module.</pre>
1 2 3 4 5 6 7	AdjOpFlashTime: AdjOpFlashY: AdjOpFlashZ: AdjOpFlashMaxPERatioCut: AdjOpFlashMinPECut: AdjOpFlashMinNHitCut: FlashMatchByResidual:	4500 100. 100. 1.00 20.0 10 false	
	SaveSignalDaughters: SaveSignalEDep: SaveSignalOpHits: SaveOpFlashInfo: SaveTracKInfo:	false false false false false	

*Additional cut in the context of bkg. production: OpFlashPE > 20.

Results: centralAPA Matching Efficiency

- Efficiency **#correctly matched events / #*events** (correct match = match to OpFlash with purity > 0).
- **Relevant efficiency curves** to interpret TPC PDS signal matching.
- For reference, solar event (15 MeV +3Hits) with drift 150 cm has a 80% chance of correct match.

Results: centralAPA Matching Efficiency

- Very good overall performance compared to previous results!
- Efficiency best defined as a function of **neutrino energy** and **drift coordinate**.

Results: centralAPA 3D Smearing

- Scope of full 3D smearing matrices for neutrino events.
- Found slight miss reconstruction of RecoX sign (see <u>backup</u>) due to TPC 23 events being reconstructed as TPC 0. Needs further investigation.

TPC #Events

- Showing vertex error distributions per TPC.
- 24 TPCs should be found [0-23].
- Found missing 23 contribution.
- Double the amount of clusters in TPC 0.
- \rightarrow Need to investigate

stage of failure

(production/analysis).

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Prev. Results

Standard Flash

• <u>Standard Flash algorithm</u> build to reconstruct high energy signals using DBSCAN.

double	Time () const
double	TimeWidth () const
double	AbsTime () const
unsigned int	Frame () const
double	PE (unsigned int i) const
std::vector< double > const &	PEs () const Returns a vector with a number of photoelectrons per channel. More
bool	hasXCenter () const Returns whether the estimated center on x direction is available. More
double	XCenter () const Returns the estimated center on x direction (. More
double	XWidth () const
double	YCenter () const
double	YWidth () const
double	ZCenter () const
double	ZWidth () const
bool	InBeamFrame () const
int	OnBeamTime () const
std::vector< double > const &	WireCenters () const
std::vector< double > const &	WireWidths () const
double	TotalPE () const
double	FastToTotal () const

* Missing important variables: Purity, Completeness, FastToTotal (present but not filled).

dune10kt_1x2x6

TNuE: 17.58MeV Cluster: 10

- OpHit size \rightarrow #PE (1 50)
- OpHit color \rightarrow **Purity (0 1)**

Standard Flash Distributions: Background vs Signal

- **Signal** defined according to 0 < FlashTime < 5 tick.
- **Poor signal vs background separatio**n in all variables.

