Fiducial volume for trigger.

Klaudia Wawrowska klaudia.nicola.wawrowska@cern.ch

10/12/2024

Basic Idea

Radiological backgrounds limit trigger sensitivity due to high rates.

Could exploit difference in spatial signal & background distributions to improve signal visibility.

- Likelihood of observing neutrino signal is uniform across the detector.
 - \rightarrow Expect signal event rates to scale linearly with detector volume.
- Background rates accumulate in certain detector regions.

Is there pay-off in using only signal from a fiducial volume (FV) region to inform Trigger Decisions?

□ In this context, signal could mean either TPs or TAs.

Current Background Model

Existing detector setup doesn't tell the whole story about external backgrounds:

- 1x2x6 Workspace:
 - Configuration: **CPA | APA | CPA**
 - Represents detector environment for internal APA.
- Full 10 kT Detector:
 - Configuration: **APA | CPA | APA | CPA | APA**
 - Additional external APAs on either side of the CPAs.

Background Models:

- 1. Central APA:
 - Simulates internal drift environment.
- 2. Lateral (external) APA:
 - Simulates outer drift volume influenced by external backgrounds.
 - Only x>0 side of the 1x2x6 geometry (APA | CPA).

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Radiological hit distributions

Background rates are highest near:

- Detector edges
- APA planes

Combined PP/DS Meeting | 10.12.2024

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Radiological hit distributions

Background rates are highest near:

- Detector edges
- APA planes

Two types of fiducial cuts to improve S/B:

- Edge Cut: Removes regions near detector edges.
- APA Cut: Excludes regions close to APA planes.

Combined PP/DS Meeting | 10.12.2024

5

Singal (S) & Background (B) definitions

Signal (S):

- Assume generic, spatially uniform signal.
- Scales linearly with the fiducial detector volume: $S_{fv} = S_{tot} \cdot \frac{V_{fv}}{V_{tot}}$

Background (B):

- Here defined as the **average number of hits/event** within the detector volume before and after fiducial cuts.
- Calculated for both central and lateral APA background models.

Signal-to-Background (S/B):

• Only interested in relative improvement between (S/B)_{tot} and (S/B)_{fv} thus:

$$S = \frac{S_{fv}}{S_{tot}} \qquad B = \frac{B_{fv}}{B_{tot}}$$

Both S & B represent surviving signal and background fractions after the FV filtering, and fall in the range [0,1].

Parameter scan | lateral APA

Performed a parameter scan of different FV cut values noting how S and B change.

• As expected, observe more rapid decrease in bgd events with increasing cut values.

Compared two performance metrics:

- S/B ratio
- signal significance (S/ \sqrt{B})

Choosing cuts will be a trade off between S/B & signal significance:

• Smaller volume (tighter cuts) improve S/B but degrade signal significance due to low signal acceptance.

Parameter scan | central APA

Similar trends to lateral APA, with one main exception:

Fall in bgd rates with APA cuts less steep since dealing with internal (i.e. "quieter") APA.

Combined PP/DS Meeting | 10.12.2024

Optimising cuts

Optimum cut values can be extracted by maximising the objective function :

 $\alpha = 1 \rightarrow S/B$ maximised $\alpha = 0 \rightarrow$ signal significance maximised. $\alpha = \frac{1}{2} \rightarrow$ Both contribute equally.

Combined PP/DS Meeting | 10.12.2024

		APA cut [cm] (α = 0)	Edge cut [cm] (α =0)	S/B improvement factor	Approx. S/√B improvement
Loose FV cuts maximising signal significance :	Lateral APA	50	25	1.20	~16%
	Central APA	0	25	1.25	~8%
		APA cut [cm] (α = 1)	Edge cut [cm] (α = 1)	S/B improvement factor	Approx. S/√B improvement
Tight FV cuts maximising S/B:	Lateral APA	215	50	2.48	-5%
	Central APA	225	30	1.95	-15%
		APA cut [cm] (α = ½)	Edge cut [cm] (α = ½)	S/B improvement factor	Approx. S/√B improvement
Best of both worlds:	Lateral APA	150	30	2.22	+8%
	Central APA	130	30	1.85	+3%

Results

K. N. Wawrowska

Conclusions

Very basic proof-of-concept study, but it looks like..

With the right cut values, it's possible to simultaneously improve S/B & S/ \sqrt{B} .

> Expect marginal improvement in signal significance, but at least we don't degrade it!

Final results depend on what we'd like to prioritise (signal acceptance, S/B, S/ \sqrt{B} . ??).

> How do all of these translate to the trigger performance & physics sensitivity?

This FV signal "filtering" could be done either at TP or TA level.

> Do we have the means to select data in this way online?

