
Symmetries and Chaos
in Modeling Beam Dynamics

Tim Zolkin1

1FNAL

December 19, 2024

Tim Zolkin Symmetries and Chaos



Goals and structure of presentation

Part 1. Short review of reversible dynamics

Part 2. Applications to beam dynamics

1. Choice of initial conditions
2. Selection of chaotic indicators
3. Averaging over initial conditions
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Motivation

1. From J.A.G. Roberts and G.R.W. Quispel

...In comparison, reversible dynamical systems have received far less
attention and the treatment that they have received has tended to
be less systematic. This has led to the situation where the lit-
erature on the subject is quite scattered, with some authors
not being aware of the generality of the mathematical the-
ory underlying their results. One of our motivations for writing
this report is to try and remedy this situation. For the same rea-
son we provide an extensive list of references on (nonconservative)
reversible systems, both on their theory, and on their applications
in such diverse fields as condensed matter physics, fluid dynamics,
laser physics, molecular dynamics, quasicrystals, chemistry, biology
etc. (Sevryuk [1991b])...
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Motivation

2. Thin sextupole magnet and Rf-station. Phase space (q, p)
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Motivation

3. Recycler, (x , px)-plane. Simulation by Cristhian Gonzalez-Ortiz
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Motivation

3. Recycler, (x , y)-plane. Simulation by Cristhian Gonzalez-Ortiz
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“Classical” concept of time-reversal symmetry

Invariance of equations of motion under the transformation t → −t

• [Loschmidt 1877]. Particles in a velocity-independent force field.

• [Boltzmann 1897,1898]. Maxwell’s equations are reversible if one also
reverses the field B → −B.

• [Painlevé 1904]. Newton’s equations of motion for a free-falling body.

• [Penrose 1979, 1989]. The Einstein equations of classical general
relativity.

• [Marchal 1990]. Three-body problem.

• [Wigner 1959]. Time-reversal symmetry in quantum mechanics.

A system that is invariant under time reversal is called reversible.
Reversibility is not necessarily equivalent to invertibility or to
thermodynamic reversibility !
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Time-reversal symmetry in ODEs

Example: if x = γ(t) is a solution, so is the x = γ(−t)

ẍ = F (x), F : R → R,
ẍ = F (x), F : Rn → Rn,

ẍ = F (x , ẋ2), F : R2 → R.

Example: H = p2

2 + V (x), or more generally H[p⃗, x⃗ ] = H[−p⃗, x⃗ ]

ẍ = F (x) →
ẋ = p

ṗ = F (x , p2)

If [x(t), p(t)] is a solution, so is the [x(−t),−p(−t)]:

t → −t x → x p → −p
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Generalized definition [Devaney, 1976]

A dynamical system (not necessarily conservative) is reversible if
there is an involution in phase space which reverses the direction of
time; no restriction to conservative or to even-dimensional systems.

A general system of n coupled first-order ODEs,

dx⃗

dt
= F (x⃗), x⃗ ∈ Rn,

is reversible if there is an involution G = G−1 which reverses the
direction of time, i.e.,

d(G x⃗)/dt = −F (G x⃗), G ◦ G = Id.

• G — reversing symmetry of the system;
• trajectories that are left invariant by G are called symmetric;
• otherwise they are asymmetric.
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Time-reversal symmetry in ordinary difference equations

A dynamical system (not necessarily conservative) is reversible if
there is an involution in phase space which reverses the direction of
time; no restriction to conservative or to even-dimensional systems.

A general system of n coupled first-order difference equations,

x⃗i+1 = T x⃗i , x⃗ ′ = T x⃗ , x⃗ ∈ Rn,

is reversible if there is an involution G = G−1 which reverses the
direction of time, i.e.,

T ◦ G x⃗i+1 = G x⃗i , T ◦ G x⃗ ′ = G x⃗ .

T ◦ G ◦ T = G T = H ◦ G and T−1 = G ◦ H

• G , H — reversing symmetries: H ◦ H = G ◦ G = Id.
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Short summary on reversibility:

• A map T is reversible, if T is as a composition of two involutions:

T = R2 ◦ R1, T−1 = R1 ◦ R2. R2
1,2 = Id.

• Thus, the map and its inverse are conjugate to each other, as
there exists an invertible conjugating transformation P such that

T−1 = P ◦ T ◦ P−1, (1)

since T−1 = R1 ◦ T ◦ R1 and T−1 = R2 ◦ T ◦ R2.

• Mappings that satisfy (1) with P not necessarily an involution are
called weakly reversible.

• A map can also possess additional, independent families of revers-
ing symmetries, not necessarily but often weakly reversible, in which
case it is called a multiply reversible map. A notable case discussed
in is that of doubly reversible mappings, such as reversible odd maps,
where T commutes with the rotation Rot (π).

Tim Zolkin Symmetries and Chaos



Example 1.1 Hénon map, F (x) = x2

T = Rot(ψ) ◦ Lens−F :
x ′ = x cosψ − [y − F (x)] sinψ,

y ′ = x sinψ + [y − F (x)] cosψ,

T = Ref(ψ/2) ◦ RF , T−1 = RF ◦ Ref(ψ/2),

where

Ref(ψ) :

[
q′

p′

]
=

[
cos 2ψ sin 2ψ

sin 2ψ − cos 2ψ

][
q

p

]
Rf :

q′ = q,

p′ = −p + f (q).

with corresponding first and second symmetry lines:

L1 : y = x tan(ψ/2) and L2 : y = F (x)/2 .
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Example 1.2 One- and two-lens lattices.

q′ = p q′ = −q + f1(p)

p′ = −q + f (p) p′ = −p + f2(q
′)

Figure: Symmetric and asymmetric integrable McMillan mappings.
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Example 2.1 Doubly reversible odd mappings

For mappings in McMillan form that satisfy f (p) = −f (−p), an
additional spatial symmetry arises. Specifically, these mappings
commute with the area-preserving involution:

T = Rot(π) ◦ T ◦ Rot−1(π).

This property generates a distinct class of transformations:

Q1 = Ref(π/4) ◦ Rot(π) = Ref(3π/4) :
q′ = −p,

p′ = −q,

and

Q2 = T ◦Q1 :
q′ = −q,

p′ = p − f (q).

As a result, the system exhibits two additional symmetry lines

l1 : p = q, l2 : p = f (q)/2,

l3 : p = −q, l4 : p = 0.
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Example 2.2 Thin focusing and defocusing octupoles
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Example 3. Thin RF station
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1. Choice of initial conditions
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1.1 Symmetry lines and reversibility

Symmetry lines

• If R is a reversing symmetry of T, then so is the entire family
of symmetries

{
Tk ◦ R

}
, forming an infinite group along with the

iterates of the map
{
Tk

}
.

• Lastly, the set of fixed points of R, FixR, and those of FixTnR,
form an infinite family of symmetry lines.

Figure: Phase space diagrams (q, p), showing 5- and 30-cycles (left) as
well as few chaotic trajectories for a Gingerbreadman map.
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1.2 Invarinat sets

For a stable orbit of a point ζ0 = (q0, p0), the trajectory typically
exhibits one of three behaviors in phase space:

(I) The trajectory forms a zero-dimensional set of n distinct points
visited in a unique periodic sequence — an n-cycle:

Tnζ0 = ζ0, n > 0.

(II) The trajectory forms a one-dimensional set that lies on an in-
variant curve, C , in the plane.

Chaotic systems. KAM curves that are densely filled in a
quasiperiodic manner.

Integrable systems. Quasiperiodic orbits or groups of
non-isolated n-cycles.

(III) The trajectory wanders without period or quasiperiodicity,
densely covering a region of the phase space. These orbits are
chaotic, exhibiting exponential sensitivity to initial conditions.
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Example. Gingerbreadman map [Devaney]:

TGingerbreadman : q′ = p,
p′ = −q + |p|+ 1.

Figure: Phase space diagrams (q, p), showing 5- and 30-cycles (left) as
well as few chaotic trajectories for a Gingerbreadman map.
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A set of points, Γ, is called invariant under the map T, if T Γ = Γ.
An invariant set is symmetric, if it is invariant under both T and R.

• n-cycles • Invariant curves • Stable and unstable manifolds

w s,u
[
ζ
(n)
k

]
=

{
ζ0 : lim

N→∞
T±(n·N)ζ0 = ζ

(n)
k

}
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1.3 Symmetric groups

• Since for any point in a symmetric orbit, ζ ∈ Γsym,

∃ k ∈ Z : R ζ = Tkζ ∈ Γsym,

its trajectory must “hop across” the symmetry line if k is odd,

T−1 ◦ R
(
T(k−1)/2ζ

)
= T(k−1)/2ζ (2)

or “cross” it if k is even,

R
(
Tk/2ζ

)
= Tk/2ζ. (3)

• If ζ and Trζ ̸= ζ lie on the same symmetry line, the orbit has an
even period of 2r . Moreover, a symmetric periodic orbit has an even
period if and only if it includes two points on the same symmetry.
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Simple model for symmetric groups

Rot =

[
cos θ − sin θ
sin θ cos θ

]
, Ref =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Each iteration, T = R2 ◦ R1, is a sequential application of two in-
volutions, here represented by linear reflections Ref(θ). By aligning
the first symmetry line with the horizontal axis (θ1 = 0), and using

Ref(θ2) ◦ Ref(θ1) = Rot(2 θ2 − 2 θ1)

we see that the rotation number must satisfy

ν = 2 k/n

where k is the angle between symmetries divided over 2π.
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[a.] Odd group, Γ ⋂ L1 ≠ ∅, Γ ⋂ L2 ≠ ∅
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1.4 Islands and bifurcations

Fixed points: n-cycles, n > 2:
✓Transcritical (T) ✓Touch-and-Go (TG)
✓Saddle-Node (SN) ✓Saddle-Node (SN)
✓Pitchfork (PF) ✓n-island Chain
2-cycles: ✓Doubled n-island Chain
✓Period-Doubling (PD) −Asymmetric bifurcation
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2. Selection of chaotic indicators

Comparison chart

ML FMA GALI/REM

Tongues + + +
Tongue structure − ± +
Anti-tongue ± − +

For ML plot we use ν as a color, and black for mode-locked refions

dν/dq = ϵ ≈ 0

For FMA and SALI/GALI we use log10(10
−16 + ind)

indFMA = |ν1 − ν2|

indREM =
√

(qfin − qini )2 − (pfin − pini )2
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ML vs. FMA vs. GALI
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Figure: Isochronous and period-doubling diagrams for the Hénon map
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Thank you for your attention.

Questions?
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