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Goals and structure of presentation

Part 1. Understanding the diagram

Circle map and mode-locking
Twisted tongues
Seams, cuts, tears and frays
Twistless torus
Shapes of elementary domains

Part 2. Results

Sextupole
Octupole
Decapole
Duodecapole
RF-station
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0. Hénon set
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ML vs. FMA vs. SALI/GALI/REM
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Figure: Isochronous and period-doubling diagrams for the Hénon map
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1.1 Circle map and mode-locking

Standard circle map

Tν0,ϵ : θ
′ = ϕ(θ) mod 2π, θ ∈ S1 = [0; 2π),

ϕ(θ) = θ +Ω+ ϵ sin θ, Ω = 2π ν0.

ν0 ∈ [0; 1) is the bare rotation number/tune, while ϵ > 0 is the cou-
pling strength, describing the level of externally applied nonlinearity.

• Unperturbed case, ϵ = 0. The system exhibits a rigid rotation:

θ′ = θ +Ω,

where every point moves at a constant angular velocity, Ω.
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By analyzing the behavior of ϕ(θ), we identify key scenarios:

• Small perturbations, 0 < ϵ < 1. In this range, the function ϕ(θ)
remains monotonically increasing, meaning all orbits have to move
forward. The map Tν0,ϵ is an analytic diffeomorphism — smooth,
invertible, and differentiable (along with its inverse) transformation.

• High perturbations, ϵ > 1. When ϵ exceeds 1, the function ϕ(θ)
is no longer bijective, making the circle map Tν0,ϵ noninvertible. This
opens the possibility to more complex dynamics, such as bistability
and subharmonic routes to chaos.

• Critical case, ϵ = 1. The value ϵ = 1 is referred to as critical, as
it marks the boundary between two qualitatively different behaviors
seen in the intervals 0 < ϵ < 1 and ϵ > 1.
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Figure: Standard circle map’s iterative function. The solid colored
curves represent one period of the ϕ(θ)mod 2π for different values of the
coupling strength parameter ϵ = 0, 1/2, 1, 2 as indicated in the legend.
The red curve marks the critical case. The black dashed line corresponds
to a linear function with a slope of 1, included for reference.
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Top plot shows devil’s staircases:

ν =
1

2π
lim
n→∞

ϕn(θ0)− θ0
n

.

for ϵ = 1 (red) and 1/2 (green).
The bottom plot schematically il-
lustrates several Arnold tongues

Tα = {(ν0, ϵ)| ν = α}

in the (ν0, ϵ) space. Rational
tongues Tα corresponding to
mode-locking are labeled along
the horizontal axis, where α
matches the value of ν0. Two
curves associated with irrational
tongues, ψ = 5

√
2 − 1 and γ =

2− ϕGR , are marked at the top.
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Back to mode-locking plot
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1.2 Twisted Tongues

When comparing the ML diagrams with the bifurcation diagram
of the circle map, two qualitative differences stand out:

(i) Rational tongues again appear in a sequence similar (but dif-
ferent) to the Farey sequence, for fixed values of ν0 = 0 and
ν0 = 1/3 with small but nonzero distances along the sym-
metry lines (|q1,2| > 0), we observe instability rather than
mode-locked motion — singular tongues. For ν0 = 1/2 (with
a = −2), a pair of tongues T1/2 forms along the second symme-
try line; however, the motion becomes unstable near the origin.

(ii) Tongues respond differently to perturbations by varying slopes
as a function of amplitude. For small ϵ in the circle map, the
rotation number’s derivative d/d(ϵ2) varies monotonically

lim
ϵ→0

d(2π ν)/d(ϵ2) = −1

4
cot[π ν0].
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Twist coefficients

In canonical form where J is the action and θ is the angle:

J ′ = J,

θ′ = θ + 2π ν(J),

the rotation number is often expressed as a power series of J:

ν(J) = ν0 + τ J = ν0 + τ0J +
1

2!
τ1J

2 +
1

3!
τ2J

3 +O(J4),

where the derivative of ν with respect to J

τ(J) =
dν

dJ
= τ0 + τ1J +

1

2
τ2J

2 +O(J3)

known as the twist, plays a critical role in nonlinear stability.
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McMillan form mappings with a smooth, differentiable force

f (q) = a q + b q2 + c q3 + . . .

the first twist coefficient, τ0, is expressed as:

2π τ0 =
1

4− a2

[
4 b2

a+ 1/2

(a− 2)(a+ 1)
− 3 c

]
.

When b ̸= 0, τ0 is defined for values of ν0 excluding 0, 1/2 and 1/3
(a ̸= 2,−2,−1), where it becomes singular, while τ1 also requires
ν0 ̸= 1/4, 1/5, 2/5 (a ̸= 0, (−1±

√
5)/2).
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Hénon twists
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Figure: Magnified vicinity of resonances at ν0 = 1/5 and ν0 = 1/6,
highlighting the typical structures for odd and even island chains.

Lets get into details...
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1.3 Seam, cut, fray and tear

Figure: Symmetry lines and tongues. The first two plots show phase-
space portraits near singular tongues corresponding to transcritical [H1]
and touch-and-go [H9] bifurcations, where ν0 is close to 0 and 1/3. The
following two plots represent typical scenarios for regular tongues, illustrat-
ing even [H5] and odd [H3] island bifurcations near ν0 = 1/4 and ν0 = 1/5.
Stable cycles are shown in blue, unstable cycles in red, and intersections
of symmetry lines with stable/unstable manifolds are highlighted in white.
These phase-space portraits are recreations of Hénon’s original palettes,
presented here in McMillan form, with REM parameters used for coloring.
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Figure: Seam and cut. Schematic illustration shows the devil’s staircase
pattern as the symmetry line crosses through the center of the island (stable

n-cycle ζ
(n)
ep in blue) and node (unstable n-cycle ζ

(n)
un in red). The left plot

represents an Arnold tongue — a flat region bordered by intersections with

the stable and unstable manifolds of ζ
(n)
un (white points). In the right plot,

a “cut” appears where the derivative of ν(q) diverges to infinity.
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Fray and tear
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Fray and tear (phase space)
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1.4 Twistless torus
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Ribcage and cobras

Figure: Structure of Arnold tongues in the Hénon map for the region with
positive twist coefficient τ0 > 0, i.e., a ∈ (−1,−1/2).
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Life of a twistless torus & Stabilization

Figure: Structure of Arnold tongues in the Hénon map for the region with
positive twist coefficient τ0 > 0, i.e., a ∈ (−1,−1/2).
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1.5 Shapes of elementary domains

Figure: The MBM set with its central cluster approximated by a cardioid
(red) and a cluster at a non-root node approximated by a circle (green).

c − c0 = r0 e
i ϕ

(
1− 1

2
e i ϕ

)
and c − c0 = r0 e

i ϕ.

V. Dolotin and A. Morozov, International Journal of Modern
Physics A 23, 3613 (2008),
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2. Results

-2 -1 - 1
2 0 1 2 a

-1

0

1

τ0
PD TG TL T

McMilan form

Hénon form

-2 -1 - 1
2 1 2 a

|q2|
1/2 1/4 1/5 1/62/5 3/10

0

1
3

1

2

Tim Zolkin Isochronous and Period-Doubling Stability Diagrams



2.1 Thin sextupole in Hénon form of the map
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2.2 Thin focusing and defocusing octupoles
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Beetles and Bugs
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Self similarity
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Twist coefficients

Figure: Twist coefficients for (a.) cubic map, f+(p) = a p + p3, (b.)
Chirikov map, f (p) = 2 p +K sin p, (c.) fourth-power, f+(p) = a p + p4,
and (d.) fifth-power, f+(p) = a p + p5, mappings.
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2.3 Thin decapole
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2.4 Thin focusing and defocusing duodecapoles
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Portal and Black hole

Complex structures can be observed upon the magnification:
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2.5 Thin RF station
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Twist coefficients

Figure: Twist coefficients for (a.) cubic map, f+(p) = a p + p3, (b.)
Chirikov map, f (p) = 2 p +K sin p, (c.) fourth-power, f+(p) = a p + p4,
and (d.) fifth-power, f+(p) = a p + p5, mappings.
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Thank you for your attention.

Questions?
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