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Goals and structure of presentation
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m Circle map and mode-locking
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m Seams, cuts, tears and frays
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m Part 2. Results
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ML vs. FMA vs. SALI/GALI/REM
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Figure: Isochronous and period-doubling diagrams for the Hénon map
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1.1 Circle map and mode-locking

Standard circle map
Tye: 0 =¢(0) mod 2, 6 ¢ St = [0; 27),
$(0) =0+Q+€sind, Q=2mwp.

vy € [0; 1) is the bare rotation number/tune, while € > 0 is the cou-
pling strength, describing the level of externally applied nonlinearity.

e Unperturbed case, ¢ = 0. The system exhibits a rigid rotation:
0 =0+Q,

where every point moves at a constant angular velocity, €.
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By analyzing the behavior of ¢(f), we identify key scenarios:

e Small perturbations, 0 < € < 1. In this range, the function ¢(0)
remains monotonically increasing, meaning all orbits have to move
forward. The map T, . is an analytic diffeomorphism — smooth,
invertible, and differentiable (along with its inverse) transformation.

e High perturbations, ¢ > 1. When ¢ exceeds 1, the function ¢(0)
is no longer bijective, making the circle map T,  noninvertible. This
opens the possibility to more complex dynamics, such as bistability
and subharmonic routes to chaos.

e Critical case, ¢ = 1. The value e = 1 is referred to as critical, as
it marks the boundary between two qualitatively different behaviors
seen in the intervals 0 < ¢ < 1 and € > 1.
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Figure: Standard circle map’s iterative function. The solid colored
curves represent one period of the ¢(#) mod 27 for different values of the
coupling strength parameter ¢ = 0,1/2,1,2 as indicated in the legend.
The red curve marks the critical case. The black dashed line corresponds
to a linear function with a slope of 1, included for reference.
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Back to mode-locking plot
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1.2 Twisted Tongues

When comparing the ML diagrams with the bifurcation diagram

of the circle map, two qualitative differences stand out:

(i) Rational tongues again appear in a sequence similar (but dif-
ferent) to the Farey sequence, for fixed values of 19 = 0 and
vo = 1/3 with small but nonzero distances along the sym-
metry lines (|g12|] > 0), we observe instability rather than
mode-locked motion — singular tongues. For vy = 1/2 (with
a = —2), a pair of tongues 7/, forms along the second symme-
try line; however, the motion becomes unstable near the origin.

(ii) Tongues respond differently to perturbations by varying slopes
as a function of amplitude. For small € in the circle map, the
rotation number’s derivative d/d(e?) varies monotonically

lim d(271)/d(Y) = —% e
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Twist coefficients

In canonical form where J is the action and 0 is the angle:

J =,
0 =0+2mv(J),

the rotation number is often expressed as a power series of J:

1 1
v(J))=wvo+7J=v9+710J + 57'1./2 arF 57’2./3 +O(J4),

where the derivative of v with respect to J

d 1
7(J) = d—j — 7 =i gl - 5 )2 + O(S)

known as the twist, plays a critical role in nonlinear stability.
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McMillan form mappings with a smooth, differentiable force

flg)=aq+bg®>+cqg®+...

the first twist coefficient, 7p, is expressed as:

7 Py

2T T =

When b # 0, g is defined for values of vy excluding 0,1/2 and 1/3
(a #2,—2,—1), where it becomes singular, while 71 also requires

vo # 1/4,1/5,2/5 (a # 0,(—1 £/5)/2).
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Figure: Magnified vicinity of resonances at vy = 1/5 and vy = 1/6,
highlighting the typical structures for odd and even island chains.

Lets get into details...
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1.3 Seam, cut, fray and tear

P Va

Figure: Symmetry lines and tongues. The first two plots show phase-
space portraits near singular tongues corresponding to transcritical [H1]
and touch-and-go [H9] bifurcations, where 4 is close to 0 and 1/3. The
following two plots represent typical scenarios for regular tongues, illustrat-
ing even [H5] and odd [H3] island bifurcations near vy = 1/4 and vy = 1/5.
Stable cycles are shown in blue, unstable cycles in red, and intersections
of symmetry lines with stable/unstable manifolds are highlighted in white.
These phase-space portraits are recreations of Hénon's original palettes,
presented here in McMillan form, with REM parameters used for coloring.
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Tongue & seams Cut
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Figure: Seam and cut. Schematic illustration shows the devil's staircase
pattern as the symmetry line crosses through the center of the island (stable
n-cycle Cés) in blue) and node (unstable n-cycle g‘&ﬁ) in red). The left plot
represents an Arnold tongue — a flat region bordered by intersections with
the stable and unstable manifolds of Cﬂf,’) (white points). In the right plot,
a “cut" appears where the derivative of v(q) diverges to infinity.
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Fray and tear
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Fray and tear (phase space)
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1.4 Twistless torus
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Ribcage and cobras
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Figure: Structure of Arnold tongues in the Hénon map for the region with
positive twist coefficient 79 > 0, i.e., a € (=1,—-1/2).
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Life of a twistless torus & Stabilization
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1.5 Shapes of elementary domains

Figure: The MBM set with its central cluster approximated by a cardioid
(red) and a cluster at a non-root node approximated by a circle (green).

. 1 . )
c—co:roe’d’<1—2e’¢> and c—co=rye'®.

V. Dolotin and A. Morozov, International Journal of Modern
Physics A 23, 3613 (2008),
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2.1 Thin sextupole in Hénon form of the map

Isochronous diagram
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2.2 Thin focusing and defocusing octupoles

S

rd
7
7
7
\ /
—-...'
(%)

Tim Zolkin Isochronous and Period-Doubling Stability Diagrams



Beetles and Bugs
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Self similarity
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Twist coefficients
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Figure: Twist coefficients for (a.) cubic map, f.(p) = ap + p3 (b.)
Chirikov map, f(p) =2p+ K sinp, (c.) fourth-power, . (p) = ap + p*,
and (d.) fifth-power, £, (p) = ap + p°, mappings.
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2.3 Thin decapole
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2.4 Thin focusing and defocusing duodecapoles
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Portal and Black hole

Complex structures can be observed upon the magnification:

Portal -»
Black hole
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2.5 Thin RF station
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Figure: Twist coefficients for (a.) cubic map, f.(p) = ap + p3 (b.)
Chirikov map, f(p) =2p+ K sinp, (c.) fourth-power, . (p) = ap + p*,
and (d.) fifth-power, £, (p) = ap + p°, mappings.
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