

Test stand integration and cryogenic qualification of pre-series 6T conduction cooled magnet assemblies

Electromagnetic Application & Instrumentation Division

Bhabha Atomic Research Centre

Tests carried out on Magnet assemblies

Electrical Measurement

Warm magnetic field mapping

BAR

Todiagnosetransferfunction,coilpolarity,Buckingcoilpositionerrorsduringmanufacturing

 \geq

BARC Superconducting Wire strand properties (A vs T) (mail query response)

Luvata OK636 (0.4mm bare dia) NbTi Wire Data

Superconducting Wire strand material properties

t(K)/ B (T)	1	2	3	4	5	6	7	8	9	10
2	408.24	329.38	279.50	240.75	207.86	178.55	151.60	126.27	102.04	78.51
2.15	403.46	325.23	275.68	237.16	204.43	175.24	148.38	123.12	98.93	75.42
2.5	391.40	314.77	266.06	228.09	195.77	166.88	140.25	115.15	91.07	67.59
2.8	380.09	304.96	257.04	219.59	187.64	159.04	132.62	107.67	83.68	60.19
3	372.07	298.00	250.65	213.57	181.88	153.48	127.21	102.36	78.42	54.92
3.5	350.41	279.23	233.38	197.30	166.33	138.45	112.56	87.97	64.12	40.48
4	326.58	258.56	214.38	179.39	149.19	121.88	96.39	72.01	48.16	24.07
4.2	316.46	249.79	206.32	171.78	141.92	114.84	89.50	65.19	41.28	16.80
4.5	300.69	236.11	193.75	159.93	130.56	103.84	78.72	54.48	30.38	4.59
5	272.86	211.99	171.57	139.00	110.51	84.36	59.55	35.23	10.02	0.00

Cryogenic test stand for magnet testing

Magnet testing – Temperature & voltage tap monitoring

Magnet assembly integrated with test stand

Temperature sensors

Sensor 1	Sensor 2	Sensor 3	Sensor 4
Magnet strap 1	Magnet strap 2	2 nd stage Cold head plate	LH heat sink
Sensor 5	Sensor 6	Sensor 7	Sensor 1
RH heat sink	CL heat sink	Bobbin	Thermal shield bottom

Voltage taps MC1 Start MC2 End

Voltage tap Locations

MC1 Start HTS lead Top "B" & Bottom "C" MC1 END HTS lead Top "D" & Bottom "E" MC2 Start HTS lead Top "F" & Bottom "G" MC2 End HTS lead Top "H" & Bottom "J"

BJ -drop gives *warm lead drop* HF -drop monitoring for *Ldi/dt* BC-drop gives information for *HTS drop*

KM -check whether joint is *superconducting*

Magnet cool down

Electrical Measurement P2-SSR-BARC-A-007

3600 30

0.44

OK 636 507 Ω

203.0 mm

Magnet Sr. No.

P2-SSR-BARC-A-PS-007

WINDING DETAILS OF MAIN COILS					
MC-1			MC-2		
Total Turns	11700		Total Turns	11817	
Total Layrs	45]	Total Layrs	45	
Supercouctor Dia.	0.44		Supercouctor Dia.	0.44	
Superconductor Grade	OK636		Superconductor Grade	OK636	
Resistance	667 Ω		Resistance	989 <u>Ω</u>	
Diameter	97.0 mm		Diameter	137.0 mm	

WINDING DETAILS OF BUCKING COILS						
BC-1			BC-2			
Total Turns	3600		Total Turns			
Total Layrs	30		Total Layrs			
Supercouctor Dia.	0.44		Supercouctor Dia.			
Superconductor Grade	OK 636		Superconductor Grade			
Resistance	507 Ω		Resistance			
Diameter	203.0 mm		Diameter			

WINDING DETAILS OF DIPOLE CORRECTOR COILS					
DC-1			DC-2		
Total Turns	300		Total Turns	300	
Supercouctor Dia.	0.44		Supercouctor Dia.	0.44	
Superconductor Grade OK 636			Superconductor Grade	OK 636	
Resistance 24.5 Ω]	Resistance	25.0 Ω	
DC-3			DC-4		
Total Turns	300		Total Turns	300	
Supercouctor Dia.	0.44		Supercouctor Dia.	0.44	
Superconductor Grade OK 636			Superconductor Grade	OK 636	
Resistance 24.7 Ω]	Resistance	25.2 Ω	

		Measured Resistance, Inductance and G						
11817	Coil	Resistance (Ω)	L@100Hz (mH)	Q@100Hz	L@			
45 0.44	MC1	680 74	3793 3	2 11	2			

		(Ω)	(mH)		(mH)
	MC1	680.74	3793.3	2.11	2002.4
]	MC2	1009.75	6284.7	1.50	650.75
	BC1	516.51	1467.5	0.81	775.51
	BC2	516.65	1580.6	0.88	846.85
	DC1	25.31	15.88	0.40	14.9
	DC2	25.35	15.93	0.40	14.99
	DC3	25.32	15.99	0.40	15.03
	DC4	25.39	15.92	0.40	14.98
	10				4/29/2024

Q@100Hz L@1KHz

IIFC magnet meeting presentation - Kumud Singh | SSR2 lenses For PIP-II

SSR magnet assembly – Axial field mapping

BARCON BA

As constructed magnet vs design

Dipole corrector Axial field map

Horizontal corrector transfer function – 1.19mT/A

Vertical corrector transfer function – 1.1 mT/A

Magnetization of the superconductor

Magnetization has two components :Persistent current in the filaments $M_f = \frac{2}{3\pi} J_c d_f$ depends on B

Eddy current coupling between filaments

$$M_e = \frac{dB}{dt} \frac{1}{\rho_t} \left[\frac{p_w}{2\pi} \right]^2$$
 depends on dB/dt

Dipole corrector measurements in Quad mode

Voltage tap measured data on 007 Magnet assembly

PIP-II

003 & 008 Testing progress

Previous limitations for magnet ramping

- Issue of heating beyond 30A observed ; Drop across coil increases indicating heat load due to coil splices and interconnections was suspected
- However there is an issue with flag solder degradation (probably during warm up)
- Heating (temperature rise observed) even after shorted connections at the flag

Changes incorporated

- Flag directly bolted to the heat sink fin with kapton tape (two layers-760 µm) insulation
- Improvement observed, however heating is still significant for higher currents
- Solder interconnections will need to be changed after this testing
- Magnet 003 ramped upto 5T aperture field @ 33A

Temperature Reading (C :LHS Heat sink; A : Flag ; B Thermal shield)

Changes incorporated - 003 Magnet

- Flag directly bolted to the heat sink fin with kapton tape (two layers-760 µm) insulation
- Improvement observed, however heating is still significant for higher currents
- Magnet 003 ramped upto 5.55T aperture field @ 36.5 A. Axial field mapping carried out.
- Fringe field levels within 10G

Temperature Reading (C :Bolted Flag Surface ; A : LHS Heat sink ; B Thermal shield)

Changes incorporated - 003 Magnet

- Magnet 003 ramped upto 5.8T aperture field @ 37.5 A. Axial field mapping carried out.
- Fringe field levels within 10G

Temperature Reading (C :Bolted Flag Surface ; A : LHS Heat sink ; B Thermal shield)

Heat sink assemblies for pre-series magnets

20A Bz=3.0787	But=3.130T
C2ST - V - 51.51mV	
U - 52 - 59 mV -	fuctuating
H - 52.07	C
J - 52.07	
b - 51.98-52.1	7 mV
z - 49-52 flue	tuating
C -52-55 N	
Y- 48- 54	
UV - 4.35mV average	
VH = 0.56mV J	
UG = -2.06mV	
UY = -4.22mV	
UZ = fluctuating	-3.8-5.58mV
11c = -4.12.4.1	47mY.
0	
D2 - 3.1629 D	3.2097
D4. 4.8373 C2	
C3 - 3.0511 CA	- 63-5021
CS. 3.4929 PS	- 53.1750

BARC Transfer function

Field Integral @ 4.5T²m @ 43A

Fringe field levels ~ 10G Within measurement uncertainties

008 Dipole corrector Map

• Fringe field levels within 10G

Temperature Reading (C :Bolted Flag Surface ; A : LHS Heat sink ; B Thermal shield)

003 and 008 Magnet dipole corrector measurement

BARC 003 and 008 Magnet dipole corrector measurement

008 Dipole corrector Map (Earlier data – corrected in first slide)

003 and 008 Magnet dipole corrector measurement

• Fringe field levels within 10G

Temperature Reading (C :Bolted Flag Surface ; A : LHS Heat sink ; B Thermal shield)

Prototype magnet and pre-series magnet assembly sent to FNAL

 One number of magnet assembly has been shipped to FNAL for integration with test stand

Temperature Reading (C3 cryocooler:D3 magnet strap; D5 Thermal shield; C4 feedthrough intercept

Joint resistance (Coil drop) Voltage drop

Test stand with voltage taps and temperature sensors

- Issue of heating beyond 30A observed
- Drop across coil increases indicating heat load due to coil splices and interconnections
- Solder Make has been changed (However material composition analysis has been verified)
- Cryocooler recharging done post 007 testing

Magnet 008 tested in horizontal test stand

BARC BARC

Quench Currents at BARC during magnet testing

Sr. No	P2-SSR-BARC-A-007	P2-SSR-BARC-A-003	P2-SSR-BARC-A-008
Maximum field	6.76T	6.87T	6.82T
Maximum Current	45A	47.5A	43.5A
Integral field	4.5 T ² m	4.56T ² m	4.5 T ² m
Dipole corrector Transfer function	HC- 1.19mT/A VC- 1.1 mT/A	HC- 0.8302mT/A VC- 0.8945 mT/A	HC- 1.12mT/A VC- 1.215 mT/A
Dipole corrector Integral field	5mT-m @50A	5.4mT-m@55A	5mT-m@50A

Summary

- Design, development and qualification of conduction cooled magnet assemblies for Superconducting Proton Accelerator is completely an indigenous effort.
- ✓ 4 No.s of pre-series magnet assemblies developed.
- Design change from bath cooled to conduction cooled technology was quickly adapted in terms of EM, thermal design, test stand development, prototype development and qualification.

Thank you for your kind attention