
01/15/2025

Common Analysis Format in RNTuple
Amit Bashyal, Peter van Gemmeren

On behalf of HEP-CCE/SOP

Argonne National Laboratory

1

anl.gov/hep-cce

ROOT::TTree (~1995 ~2025)→

✤ Storage backend of ROOT that has enabled HEP experiments to use ROOT ecosystem tools

✤ Primary storage backend and I/O subroutine until 2024

✤ >2 Exabytes of HEP data stored in TTree Format in over 25 years

✤ Evolved to address HEP experimental needs

✤ Supports the persistence and I/O of complex HEP experimental data

✤ TTree evolution to support HEP experimental needs limits it from adopting modern
computing and data analysis standards

2

ROOT::RNTuple (2025)→

✤ Builds on top of 25+ years of TTree experience

✤ Will store >10 EB of data by the end of HL-LHC

✤ Optimized I/O peformance with modern storage technologies
to enable faster read/write, selective queries in large datasets

✤ Success of RNTuple will be huge storage saving compared to
TTree

✤ Adoption of modern C++ gudelines, use of smart pointers with
the ability to pass raw ones, separation of read and write APIs for
improved I/O

✤ Forward looking design to handle large sized events and files ATLAS analysis data in TTree and RNTuple. Taken from
CHEP 2024.

3

https://indi.to/ZkrPV
https://indi.to/ZkrPV

ROOT::RNTuple (continued..)

✤ RNTuple API review conducted by HEP-CCE

✤ Review Report

✤ RNTuple API is sufficient to address the requirements of large experiments like ATLAS
and CMS with few upcoming (minor) improvements

✤ First On-Disk Binary Format release of RNTuple in November 2024

✤ TTree will be in legacy when DUNE starts taking data

✤ Upcoming experiments (including DUNE) MUST use RNTuple to keep current with
the ROOT ecosystem

4

https://indico.cern.ch/event/1468611/contributions/6223290/attachments/2977409/5241685/RNTuple%20API%20midterm%20Report.pdf

DUNE Computing Requirements

✤ DUNE Long Baseline Neutrino Oscillation Experiment with

✤ Complex and heterogeneous detector system near neutrino source (ND)

✤ Large and homogeneous detector in South Dakota (~800 miles from neutrino source) (FD)

✤ Different computing and I/O requirements for detectors at two diferent location

✤ FD is homogenous and fine grained Simple data model but ~GB size raw data from beam
trigger

✤ ND is small but heterogenous Complex data model with ~MB size raw data from beam trigger

✤ ~TB size readouts for supernova trigger

→

→

→

5

DUNE and RNTuple

✤ RNTuple is the primary storage backend and I/O subsystem during DUNE/HL-LHC era

✤ ATLAS and CMS are ahead of looking at RNTuple (Both can store all their data in RNTuple)

✤ DUNE will have to adopt RNTuple to address its computing requirements

✤ DUNE is currently designing its Data Processing Framework and Persistence layer

✤ RNTuple (and HDF5) for persistence and I/O

✤ Opportunity to develop the framework that works with RNTuple which is easier than adapting
RNTuple into an existing framework (like ATLAS, CMS)

✤ Adopt existing data models (including CAF) and I/O infrastructure that will appear in the DUNE
experiment

6

DUNE
Reconstruction Chain

✤ Raw Data in HDF5

✤ Reconstructed data will be stored in ROOT
and requires RNTuple support for
persistency and I/O

✤ HEP-CCE looked at the persistence and the
I/O of CAF Data model (This Talk)

HDF5

RNTuple

RNTuple

RNTupleCAF
D

U
N

E
 R

ec
on

st
ru

ct
io

n
C

ha
in

Disk

CAFMaker

7

Common Analysis Format (CAF) Data Model

✤ Neutrino Oscillation experiments record neutrino events in two detectors (one near
neutrino source and another at some distance) to measure neutrino oscillations

✤ CAF takes the fine grained reconstructed data and only saves relevant information
needed for oscillation analysis as light weight ntuple

✤ Data model is common for both near and far detectors

✤ CAF objects as tracks and showers

✤ Energy, momentum, relevant generator level information (for simulated events)
8

A neutrino interaction record in CAF: A
(simplified) visual explanation

Track
✤ Start, End point of Track (3D vector)
✤ Direction (3D vector)
✤ Relevant physics quantities
✤ Truth information (if Track is reco) ✤ …

Shower
✤ Start point of Shower (3D vector)
✤ End direction of Shower (3D vector)
✤ Relevant physics quantities
✤ Truth information (if reco)
✤ …

A Neutrino DetectorInteraction

An incoming neutrino

Interaction in the detector are recorded as showers and tracks
9

StandardRecord

information related to the neutrino interaction
recorded as meta, beam, mc objects.

SRFD and SRND branches record the
reconstructed interactions in ND and FD
detectors as tracks, showers and
interactions

StandardRecord: Top level CAF object that
records neutrino interaction and information
related to the interaction including beam,
detector condition and generator level
information

10

CAF is designed to record interactions
in each detectors (illustrated here are
detectors of DUNE ND Complex)

Interaction in ND-GAr

Interaction in ND-LAr

CAF Objects in RNTuple (Framework)

✤ As a HEP-CCE Effort, a light weight test framework to look at the persistence and I/O of CAF Objects in RNTuple

✤ Some design features of the framework

✤ Requires ROOT (latest) and duneanaobj (CAFObjects)

✤ Use gitmodules to download duneanaobj alongside this package

✤ Standalone build of duneanaobj different from original build which depends on DUNE specific packages

✤ Standalone Framework (support unix and various linux flavor builds)

✤ Tools and examples of I/O of structured CAF in standalone environment

✤ Examples of doing same I/O using TTree and RNTuple for better comparison

✤ Reading and writing of CAF object using TTree and RNTuple

✤ Github workflow for CI to facilitate automated checks on pull requests
12

https://github.com/hep-cce2/CAF-RNTuple.git
https://github.com/DUNE/duneanaobj.git

CAF Data and I/O Framework

✤ CAFMaker to create CAF Objects in two kinds

✤ Structured: One StandardRecord object per
entry

✤ Flat: StandardRecord object is “flattened” into
basic ROOT types during serialization, structure
information maintained in the branch names

✤ Separate Reader/Writer helper for CAF Objects

(ND) Reconstruction
Chain

CAFMaker

Reconstructed
Data

CAF(Analysis)
Data

Framework mimics this workflow in a
simplified way in a standalone
environment.

13

Example Test Code Snippets

 auto model = RNTupleModel::Create();
 std::shared_ptr<caf::StandardRecord> field_sr = model-
>MakeField<caf::StandardRecord>(obj_name);

 auto ntuple =
RNTupleWriter::Recreate(std::move(model),container_name,fname);

 TFile *cafFile = new TFile(fname, "recreate");
 std::shared_ptr<caf::StandardRecord> sr =
std::make_shared<caf::StandardRecord>();
 TTree *cafSR = new TTree(container_name,"Tree Container to
write StandardRecord Object");
 cafSR->Branch(obj_name,"caf::StandardRecord",sr.get());

Example of creating
TTree container to write
CAF Data

Example of creating
RNTuple container to
write CAF Data

(This Work)
14

Persistence of Structured CAF

✤ StandardRecord as top level
branch

✤ Underlying attributes as
sub-branches and leaves

✤ I/O using CAF dictionary
and library

✤ StandaredRecord as top level field

✤ Underlying attributes as subfields

✤ I/O using CAF dictionary and library

✤ RNTupleWriter and Reader for I/O

This Work

15

TTree RNTuple

Persistence of Flattened CAF

✤ Structured StandaredRecord is flattened and written into simple C++ types and persisted as ROOT::Tbranch
✤ Flattening done through layers of specialized template classes (each corresponding to a CAF Object)

✤ Structure of the CAF Object is maintained via naming scheme
✤ RNTuple Implementation (Simplified example done)

template<> class flat::Flat
<StandardRecord> rec{
 SRBeam beam;
 SRNDBranch nd;
 SRFD fd;
 //other attributes
};

template<> class flat::Flat
<SRND> nd{
 SRNDLAr lar;
 SRNGGAr gar;
 SRSand sand;
 //other attributes
};

template <> class flat::Flat
std::vector<SRNDL
arInt> pandora;
 //other attributes
};

template <> class flat::Flat
<SRVector3D> start{
 float x;
 float y;
 float z;
};

….

…

✤ Template class for Complex CAF objects
✤ Naming scheme
✤ Pass Data to the CAFObject attributes

✤ Template class for Simple C++ CAF Members
✤ Create Branches based on inherited name
✤ Fill Data

template < typename T>
flat:: Flat {
 //Create Branches
 //Write Data
 //Reset
};

16

File Size Comparisons with Different
Compression Settings

Significant storage savings in all compression algorithms using RNTuple for both structured
and Flat CAF Objects.

17

Summary and Outlook

✤ We showed structured CAF Objects can be persisted in RNTuple

✤ Framework provides test codes to write CAF Objects in both TTree and RNTuple

✤ Guideline to change/modify existing DUNE software stack that reads and writes structured CAF

✤ Flat CAF I/O tool needs some code refactoring

✤ Flat feature branch gives preliminary guidance on flattening CAFObjects

✤ Exetension of this work with more DUNE effort (Future work)

✤ Framework’s standalone build

✤ CAF is shared among many experiments (DUNE, Short Baseline Experiments, NOvA)

✤ Standalone build Common code and build tool regardless of experimental software environment→
18

