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DUNE Phase 11

® Phase II of DUNE includes upgrades to achieve its full scope — includes ND,

FD, and beam upgrades for higher statistics

*» But only the ND upgrade to ND-GAr (referred to as MCND in the plot),
leveraging a gas argon TPC-based design, specifically addresses neutrino
interaction systematics and detector acceptance systematics
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Design Features of ND-GAr

¢ Key design features recommended by P5 include a high-pressure
gaseous argon detector, an ECAL, and a magnetized

e Test beams validate evolving design aspects like pixelization,
amplification, and granularity to align with physics goals
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Role in Reducing v-Interaction Systematics

® Addressing neutrino interaction systematics requires resolving
discrepancies in interaction models, especially in regions
dominated by low-energy hadrons

e The low energy threshold of a high-pressure gas TPC allows
DUNE to be more sensitive to these regions

HP9TPC gives access to inaccessible regions of proton energy thanks
to its low energy threshold
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Detector Performance in Event Display - GAr vs LAr

ND-GAr's high pressure
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Bridging lcs and Design

¢ Evolving design aspects must align with physics requirements:
* Adjusting the multiplication gain to optimize the required
energy threshold
* Optimizing the granularity and pixelization in the readout
systems to reach the required tracking thresholds
* Optimizing the pad response function and diffusion to achieve
sub-mm spatial resolution
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Bridging Physics and Design - Test Beams

e Test beams — a platform to validate design concepts and physics
performance under controlled conditions

e First ND-GATr, neutrino-TPC test beam was carried out at CERN's
T10 beamline— focus was on the low-momentum proton beam (<
0.5 GeV), provides important lessons learned

» Surveyed point
e Calculated point
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Advancing R&ED Post-CERN Test Beam

majority of the R&ED has
focused ow the HPGTPC
component of ND-GAr

® On-going R&D thrusts:
* TPC amplification, initial focus on acquired ALICE MWPCs (IROC and OROCs),
current emphasis on MPGDs e.g. GEMs, with room for exploring additional
designs, e.g., Micromegas
* TPC readout options explored to date: SAMPASs
* (Gas mixture optimizations
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RED Efforts - TPC Amplification

® A starting point was MWPCs acquired from ALICE
* Two efforts in US (GOAT) and UK (TOAD) completed a pressure scan
of the chambers
* UK effort used the same pressure vessel from the CERN test beam

Fermilab Test Stand, housing an IROGC, also
named GOAT, how re-branding to GORG
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R&ED Efforts - TPC Amplification

® A starting point was MWPCs acquired from ALICE
* Two efforts in US and UK completed a pressure scan of the chambers
* Chambers able to maintain their gain with increasing pressure, requires
increased voltage to the chambers
* Using an Ar-CH4 mixture, the chambers achieve a gain of 1k with ~3kV,
deemed the safe operational limit by ALICE
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RED Efforts - TPC Amplification

e Testing GEMs, operating them at high pressure requires extensive
R&D before moving onto a test beam
* On-going efforts include tests as part of the GORG effort
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RED Efforts - TPC Amplification

¢ Bench tests indicate the expected trend with the Fe-55 pulse
height distribution at 1 atm; pressure scans are next!
e Define optimized GEM parameters for a larger triple-GEM

structure for use in a test beam .‘é"

improved voltage stability

enables higher voltage supply ..

to the GEMs
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R&ED Efforts - TPC Am

® Ahead of pressure scans, detailed simulation studies are refining
triple-GEM parameters, exploring both adjustable operational
settings—such as choice of gas mixture, transfer field strengths,
and gap configurations—and design-level modifications requiring
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R&ED Efforts - TPC Amplification

® Ahead of pressure scans, detailed simulation studies are refining
triple-GEM parameters, exploring both adjustable operational
settings—such as choice of gas mixture, transfer field strengths,

and gap configurations—and design-level modifications requiring "
a re-engineered triple-GEM stack (e.g. hole pitch) .@'
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Latest Test Beam on Readout Eleckronics

® Beam prototype TOAD carried out a full slice test of electronics under
high pressure and in test beam environment with ALICE-based SAMPA
cards, using the same pressure vessel from the CERN beam test
@ Tests carried out at Fermilab Test Beam
e Established a clear path to delivering the readout system for ~$2M,
making SAMPAs a cost-effective option for the future ND-GAr

Placed inside the
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RED Efforts - TPC Readout Electronics

e Additional measurements were noise measurement of electronics
at 4.5 bar Ar-CH4 (96:4) — demonstrated that electronics can
operate under this pressure for the first time

® Detailed pressure, volume, temperature (PVT) studies carried out
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Integration in a Fubture Test Beam

® The primary objectives:
* Demonstrate long-term operation of the GEMs with SAMPA readout
electronics at high pressure
* Demonstrate reconstruction of low energy tracks
* Probe the low-momentum region where models are in disagreement
® CERN Neutrino Platform a potential site for this:
* Focus would be on low energy beams
e Existing pressure vessel, TOAD, tested at CERN and Fermilab, a viable
platform:
* Requires upgrades, such as active cooling, temperature monitoring, sensors




Integration in a Fubture Test Beam

A key advantage of a prototype at
CERN is the GDD group, who can
offer invaluable expertise for many
of the GEM prototyping activities




Additional Test Beam Campaign

® CERN beam tests could also include neutron
beam campaign: IU Pressure Vessel

being procured for
neubtron beam bestks

* n_TOF as a potential site
® Indiana University is in the process of
procuring a pressure vessel for neutron
beam tests of GEMs at the former Cyclotron
Facility at the university
® Pressure vessel size (> TOAD) is optimized
to maximize neutron interactions on argon
® Protons with energies < 500 MeV are
unlikely to pass through the pressure
vessel walls — proton tracks from neutron
scatters on argon provide a valuable tool
for validating low-energy hadron
reconstruction
e Insights from these tests help identify gaps
in neutron reconstruction performance,

informing design requirements for ND-
GAr’s ECAL

T. A. Mohayai




Possible Timeline

2025 Q1-Q2

2025 Q3

2025 Q4

2026 Q1-Q3

2026 Q3-Q4

2027 Q1-Q4
2028 Q1-Q3

2028 Q4

Simulation studies for GEM optimizations

Pressure Scans and SAMPA Integration Preparation

Medium-scale GEM Prototype Assembly

Analysis and Development of Larger GEM Prototype

Neutron Beam Studies with IU Pressure Vessel and Optimizations of
GEM+electronics from the neutron beam test and analysis of GEM pressure scans

Preparation for CERN Beam Tests

Start of CERN Beam Test Campaign
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® The DUNE ND-GAr’s unique design includes
highly capable components that enable:
* DUNE to reach a 5o sensitivity to CP
violation
* Examining v-Ar interactions up close for

constraints on v-interaction systematics

® A wide range of physics studies, detector > 3
o b b g by l | I I =

R&D, and beam prototyping efforts are 50 75 100 125 150 175 200

underway to build this highly capable gas- NRRES

based argon detector:

* Besides R&D on the acquired ALICE
MWPCs, we are exploring various new
detector R&D areas, including MPGDs and _
light readout

* Several beam tests have been completed,
providing important lessons learned, with
further beam tests planned — a potential site
could be CERN!
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Additional Slides
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Bridging lcs and Design

e Other examples:
» Choice of gas pressure to balance increased target density with charge
amplification — charge amplification (gas gain) is reduced at high
pressure, affecting the achievable energy threshold
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Low Threshold ND-GAr

® Lower threshold of ND-GAr's HPgTPC than ND-LAr:
* Leads to a high sensitivity to low energy protons or pions:

A GAr-based detector sees lower KE
pra&cv\s thawn a LAYTPC
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Low Threshold ND-GAr

® Nucleus is a complicated environment (e.g. specially problematic when using
heavy nuclei as target):
* Nuclear effects, e.g. final state interactions not yet fully understood
* Tuning the nuclear models with data can help improve it, HPgTPC in ND-GAr
can provide access to a previously un-explored energy regions
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Superb PID for v-Ar Interaction Measurements

e dE/dx resolution: 0.8 keV/cm

e Excellent PID combined with low threshold feature allows ND-GAr to help
with correctly identifying the different final state topologies e.g. pion
multiplicities very well

AE /dx-based PID will be
comparable to PEP-4's
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R&D Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
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T. A. Mohayai




R&D Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously

operated at 1 atm)

# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)

» Maximize gas gain
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R&D Efforts

® What is involved in the charge readout optimization studies:
* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)
# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)

» Maximize gas gain, while minimizing gas electrical breakdown
Ar/CH4 (90%/10%)
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103_
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Projected Breakdown Voltage at 10 bar, 1 cm (kV)

Ar Xe Ar-CF4 Ar-CHys Ar-COq COs CF4
Townsend 52.6 75.4 61.7 63.9 68.6 129.5 179.7
Meek 69.9 98.9 72.1 80.3 87.3 171.2 212.2
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R&D Efforts

® What is involved in the charge readout optimization studies:

* Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously
operated at 1 atm)

# Defining a base gas mixture — reference is argon-based gas with 10% CH, admixture (97%

of interactions on Ar) but can be optimized to:
» Control pile up (drift velocity) and improve spatial resolution (diffusion)
» Maximize gas gain, while minimizing gas electrical breakdown

» Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrino-
hydrogen interactions
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Additional Physics Reach

e High-pressure gaseous argon enables precise reconstruction of low-
energy charged particle tracks, critical for studying exclusive final
states, e.g. pion multiplicity
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from the developing ND-GAr software, GarSoft - highlights ongoing
studies, not final resulks
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