Report from SAND Calibration WG

P.Gauzzi (Universita' La Sapienza e INFN – Roma) for the SAND Calibration WG

> SAND General Meeting January 14, 2025

DIPARTIMENTO DI FISICA

- 1. Updates on the studies for ECAL Calibration (R.D'Amico P.Gauzzi)
- 2. Grain Calibration with muons (A.Surdo)
- 3. Conclusions

DIPARTIMENTO DI FISICA

ECAL calibration in SAND

Calibration constants cell by cell determined with cosmic muons and muons from beam MIPs from cosmic rays: muon flux at surface ~ 0.02 $\mu/(s \text{ cm}^2)$

 $\Rightarrow \sim 10^4 \text{ }\mu\text{/s}$ on ECAL ($\Rightarrow 100 \text{ Hz}$ of "golden mips" in KLOE)

- Underground reduction of a factor of about 100 \Rightarrow ~ 100 µ/s on ECAL (no selection)
- Rough estimate by rescaling the KLOE numbers \Rightarrow 1 day (24 hrs): ~ 10 evts/cell
- Relaxing the "golden mip" selection: in few days ~ 10³ evts/cell

```
MIPs from beam (rock, magnet and Fe yoke, upstream ECAL modules)
```

• We need also muons from beam for the modules around the median plane and for the endcaps

Sapienza

MIPs from beam

Generation of 25000 v_µ events in the generation window = DUNE_ND_HALL
(X and Y in ~ -6.0 − 6.0 m) and to cut at Z > -10 m ⇒ 797 events with at least 1 cluster from µ in the ECAL

DIPARTIMENTO DI FISIC

SAPIENZA

- ~ 800 evts in 30 spills means ~ 26 muons/spill
- 2 × 10⁶ good muons in 24 hours of beam

MIPs from beam Events / (3.33333) 80 70 60

50

40

30 -

20

10

50

30 40

1400

1200

1000

800

600

400 200

- Golden mips: all the cluster cells in the same column
- Low statistics
- Clean distribution
- Good peak fit

- Less stringent selection: at least 3 cells in the same column
- Peak still clear

MIPs from beam

- Occupancy:
 - No conditions on muon clusters

- At least 3 cells in one column

- Golden mip selection

Energy scale calibration in SAND

- γ 's from π^0 decays: invariant mass reconstruction (need a vertex from the tracker)
- γ + electrons: ~ 30% of photons from π^0 convert in the tracker
 - \Rightarrow ~ 50% of π^0 have at least one $\gamma \rightarrow e^+e^-$ (from DUNE-doc-13262 A Near Detector for DUNE)
- High energy electrons from v_e interactions ⇒ need the momentum measurement in the tracker
- Possibility to exploit $K^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$
- From a naive rescaling of K⁰→π⁺π⁻ ⇒ O(10⁵) evts in 5 years of FHC data-taking
- Reconstruct a vertex with the ECAL only, back-propagating each of the 4 photons, but the times of the ECAL cells must be very well aligned

MC sample

• Generated 100000 v_{μ} events with vertices in in the SAND volume (TOP_VOLUME = volSAND), POTs ~ $10^{17} \Rightarrow$ ~ 30 min of beam

MC sample

• Clusters in the ECAL

Cluster particle (main contribution)									
e+/e-	µ+/µ⁻	γ	KL	π+/π-	K⁺/K⁻	n	р	Λ	
360	1260	2105	56	3033	128	3016	1491	4	

Photons from π^{0} 's

• Look at the parent of the cluster particle: select events with 2 photons from a π^0 decay \Rightarrow 128 events (256 clusters)

- Energy not well calibrated because I used an old version of SANDRECO
- Work in progress (waiting for the new version)

- Alignment of times in the ECAL requires to determine the t₀'s cell by cell
- Select straight tracks (p > 6 GeV) with 2 clusters, connecting as much as possible different regions of the ECAL
- Also in this case we could use beam muons together with cosmics
- Global offset \Rightarrow t⁰_G to be determined

Time calibration

- 1. 3D linear fit of the straigth track to get the ϑ angle
- 2. Linear fit: t vs y (or z), at least 5 + 5 points / track

$$t = T_0 + \frac{y}{c\cos\theta}$$

$$T_0 = \frac{\sum_i (t_i - t_i^0 - \frac{y_i}{c \cos \vartheta}) E_i}{\sum_i E_i}$$
 (Energy-weighted average)

3. Histograms of the residuals (one histo. per cell)

$$\Delta y_i = t_i - t_i^0 - T_0 - \frac{y_i}{c\cos\vartheta}$$

- The center of the distribution is the correction to the t⁰_i
- Iterate the procedure: re-run the ECAL reconstruction and clustering with the t⁰; 's updated and go to step 1.

Next steps (ECAL)

- Generate few x 10⁶ events for more statistics of muons from beam (waiting for the implementation of the last version of the ECAL Digitization which includes the real Endcap geometry)
- Continue the study of γ 's from π^0 decays for the absolute energy scale
- Start the discussion on ideas for the global t₀ determination
- Other items:
 - Generate events from beam flux
 - Study cosmic muons with MC

GRAIN calibration with muons

Most obvious process to be considered:

MIPs crossing the LAr volume

- muons from the beam interaction outside GRAIN
- cosmic ray muons

Muon from $\boldsymbol{\nu}$ interaction in the yoke and crossing GRAIN

Specific energy loss for a generic material: $dE/dx > ~2 MeV/(g \cdot cm^{-2})$

Can be estimated from MC simulation or measured from experimental data. For LAr:

 $\label{eq:linear} dE/dL \sim 2.5 \mbox{ MeV/cm } \Rightarrow N_0 \sim 10^5 \mbox{ ph /cm } \mbox{ Photon emission per unitary pathlength} (assuming \ f \sim 4 \cdot 10^4 \ \mbox{ph/MeV})$

The relation between muon Pathlength and Energy loss exploited to get knowledge of energy deposit in LAr, to be related to the amount of detected photons

14

\PIENZA

Muon beams to test GRAIN calibration

Simulation of different muon beams crossing GRAIN with:

- Monochromatic muons (1 GeV)
- Different impact points on GRAIN surface
- Different beam directions and path-lengths inside the LAr

.. in order to study the dependence on:

- track location and distances from the cameras (geometric acceptance)
- path-length inside GRAIN (energy deposit) for different track orientations

• ...

Scintillation light photons propagated in LAr and collected by the photo-sensor system through *OptMen* code

Simulation of the Lens-camera setup with proper SiPM-PDE and Electronics

1) Beam of 1 GeV muons along Z axis (X=Y = 0)

- 2) Beam of 1 GeV muons parallel to Z axis, at Y = 30 cm
- 3) Beam of 1 GeV muons parallel to Z axis, at Y = 45 cm

the correlation btw EdepLAr and Nphot!

... due to very near cameras?

4) Beam of 1 GeV inclined muons crossing the center

 $\sigma \approx 1 \text{ phot/MeV} (\sim 2\%)$

It is remarkable that the beams through GRAIN center (black and red) give aligned correlations one each other

⇒The distance from GRAIN center could be a parameter which affects calibration curves

DIPARTIMENTO DI FISICA

17

z (mm)

5) Beam of 1 GeV inclined muons, distant from the center

6) Beam of 1 GeV horizontal muons, ad Y = - 30cm (to be compared with Beam_2)

Beams 1 and 5 (blue and violet) give not perfect aligned correlations one each other (distance from center not equal and camera-layouts not asimmetric ..) Difference due to the **asimmetry** btw **Top and Bottom** camera layouts (14 on the Top, 7 on the Bottom)

DIPARTIMENTO DI FISIC/

y (mm) w

600

400

200

0

-200

-400

-600

-800

-200

-100

7) Beam of 1 GeV very inclined muons, crossing GRAIN center ⇒ comparison with Beam 1

Edep_LAr (MeV)

Again, the beams through GRAIN center give aligned correlations one each other (despite very different directions)

$\sigma \approx 1 \text{ phot/MeV} (\sim 2.4 \%)$ 220 Entries 1000 Mean 40 7 200 BMS 1.033 180 χ^2 / ndf 22.75/14 Constant 201.6 ± 8.5 160 Mean 40.7 ± 0.0 Sigma 0.9673 ± 0.0267 140F 120 100È <Nph/E>~41/MeV 80 60 F 40 F 20 40 Nphot/EdepLAr (/MeV) 년 14000 Nph_vs_Edep 12000 10000 8000 6000 400

2000

100

200

250

300

Edep_LAr (MeV)

150

200

z (mm)

100

Conclusions (Simulation of Muon beams in GRAIN)

- The test of the procedure with simulated muon beams shows that the calibration method with muons could work, in principle
- ✓ For muon pathlengths inside GRAIN not far from the center, a tight correlation (i.e. calibration curve) between EdepLAr and Nphot is obtained
- ✓ Larger spreads observed for tracks very near to the cameras ..
- ✓ It is remarkable that the calibration curves seem aligned for the same distance from GRAIN center (→ a parameter to be used)
- Observed the effect of the asimmetry Top/Bottom in the Lens-camera system

Conclusions

- ECAL:
 - Studies of Energy and Time calibration with muons in progress
 - Studies of Energy scale calibration with γ 's from π^0 decays started
 - Next step: strategy for t₀ global determination
- GRAIN:

21

- Studies on calibration with muons in progress
- In particular the dependence of the response on track location and path length inside GRAIN and on the distance from the cameras is studied
- Other items to be addressed in the future:
 - Calibration of the inner tracker
 - Intercalibration among subdetectors (timing)
 - Organize the software for calibration and define a place for calibration constants

DIPARTIMENTO DI FISICA

22 P.Gauzzi SAND GM 14/1/2025

SAND Calibration WG

- Calibration: from detector signals to physical variables
 - ECAL: energy, time and positions of the particles
 - GRAIN: tracks, time, energy,
 - Tracker : r-t relations, track momentum, dE/dx for PID,
 - Timing alignment among the subdetectors
- Define a strategy for each subdetector:
 - Sources: cosmics, particles from beam, ...
 - Choose suitable processes (given the expected fluxes of particles in the detector, e.g. for the ECAL: cosmic µ's as MIPs, MIPs from the beam, electrons and photons)
 - Set a calibration procedure (Which level of precision ? How much time expected ?)
 - Reference people: ECAL P.Gauzzi, GRAIN: A.Surdo, Tracker:
- Next meeting: Thursday, January 16, at 3:30 p.m. CET (8:30 a.m. CT)
- WG mailing list: <u>dune-nd-sand-calibration@fnal.gov</u>

ECAL calibration

MIPs from beam (rock, magnet and Fe yoke, upstream ECAL modules)

• ~ $1.5 \times 10^3 \mu$ /spill (1 spill = 9.6 µs every 1.2 s) without any selection

	ECAL		Rock n	nuons	Magnet events	
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)
No cut	2.23	100.0	1447.26	100.000	50.82	100.000
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775
NN cut	1.56	95.5	0.10	0.007	0.07	0.136

Table 40: Number of events per spill (9.6 μs , 7.5×10^{13} pot) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

(from DUNE-doc-13262, A Near Detector for DUNE)

• By requiring hits in the STT and ECAL \Rightarrow ~ 11 muons/spill

Time calibration

2. Linear fit: t vs y (at least 5 + 5 points / track)

$$t = T_0 + \frac{y}{c\cos\theta}$$
$$T_0 = \frac{\sum_i (t_i - t_i^0 - \frac{y_i}{c\cos\vartheta})E_i}{\sum_i E_i}$$

3. Histograms of the residuals (one per cell)

$$\Delta y_i = t_i - t_i^0 - T_0 - \frac{y_i}{c\cos\vartheta}$$

 Iterate the procedure: re-run the ECAL reconstruction and clustering with the t⁰ⁱ 's updated and go to step 1.

• Stop when the corrections are compatible with zero

Dipartimento di Fisic SAPIENZA

Events with the muon entering GRAIN

Correlation btw detected photons and deposited energy

- Not a so narrow correlation
- Possible effects from track position vs geometrical acceptance

Log scale for N phot $\int_{10^4} \int_{10^4} \int_{10^$

Apparently, different behaviours ?

DIPARTIMENTO DI FISIC

Expected muon flux from the beam and CRs

Different contributions of the target masses in SAND for beam neutrinos

(from DUNE-doc-13262, A Near Detector for DUNE)

Table 1.29: Total number of $(\nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} + \bar{\nu}_{e})$ CC+NC events expected within a single beam (9.6 μ s, 7.5 × 10¹³ POT) in the various detector components for both the FHC and RHC beam model.

Detector element	Mass	FHC	RHC	
Magnet	511 t	68.9	36.6	
ECAL	100 t	13.5	7.2	
LAr+STT	8.2 t	1.1	0.59	
STT fiducial volume	5.5 t	0.74	0.39	
Total	619.2	83.5	44.39	

 From the interaction rate /spill in Magnet yoke and ECAL, a quite low number of clean muons are expected to cross GRAIN per spill (≤ 1 µ / spill) Table 1.34: Number of events per spill (9.6 μs , 7.5 \times 10¹³ POT) and selection efficiency for the signal from ν_{μ} CC in the front barrel ECAL and the backgrounds from rock muons and magnet events.

	EC	AL	Rock r	nuons	Magnet events		
Cut	Events	ε (%)	Events	ε (%)	Events	ε (%)	
No cut	2.23	100.0	1447.26	100.000	50.82	100.000	
μ in ECAL FV	2.23	100.0	12.73	0.880	18.92	37.229	
STT & ECAL hits	1.63	72.9	6.05	0.420	3.443	6.775	
NN cut	1.56	95.5	0.10	0.007	0.07	0.136	

• Further contribution from rock μ 's (~ 1.7/spill) ...

Contribution from Cosmic Rays ...

CR Muon flux at surface ~ 0.01 $\mu/(s \text{ cm}^2)$ + underground reduction of ~ 100 Effective area of GRAIN for <60° CR muons: ~3×10⁴ cm² \Rightarrow ~3 μ/s are expected to cross GRAIN

Drawback: smaller acceptance by the tracker for

a precise track reconstruction

Main contribution only if inter-spill DAQ were ON

DIPARTIMENTO DI FISICI

