Final method proposal



Where we left it

 Demonstrated that the fit is (just) within acceptable
statistics.

* Unfolding was being slightly problematic:
 What system to use?
* Multi-dimensional unfolding
* Unfolding each process
 How to include systematics



Cross-section calculation

 What is a binned cross-section?
* Using the expectation value of the bin interval, assuming
the probability of drawing each energy of the bin is
uniform (i.e. arithmetic mean)
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* f,(E) is the fraction of events of process p at E.



Cross-section calculation

* Integration by parts, assuming dE/dx is constant:

* 0,p g = 1 ([ - (E) 1n(1v)] +f ln(N)%dE)

E,—E; dx

* This recovers the standard formula if the process
fraction, f,(E), is constant over the bin.

o If not let’s assume dfp/dx is constant, correction is
0(— (NIn(N) — N))

* For now, assume there’s no correction term.



Incomplete slices

1

*OpE—-E, = E,—E, dx [ fp(E) ln(N)]

* Only has boundary terms.

* An incomplete slice (start and end in the same
slice) does not affect this.

e But, fp, the fraction of processes interacting with
process p will still observe the interaction of the
incomplete slice.

* | propose we treat the cross-section calculation and
fractions separately



Splitting fractions

* Treating fractions and cross-sections separately has
advantages:
* Improved statistics — no events missing  Init energy: Gaussian,

* Do not need to track initial energies 3.0+/-0.05Gev
Bins: 2.9-3.4 (0.1 width)

* Created a toy to test if this works: Flat cross-sections
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Fit unfolding

e Can do multi-dimensional on energy only without
worrying about the GNN fit.

e Still need unfold the fractions in each interacting
bin onto the true interaction bins.

e | see 3 solutions:

* Redo the unfolding with interactions only

* Project the energy unfolding into the interaction
dimension only

* Project the energy unfolding, and iterate to account for
cross-section shape



iteratively fit unfolding

* The detector’s energy response is independent of
process.

* The interaction response by itself does not include
any cross-section dependence (though the
initial+interaction correlated response does).

* If the process fractions were independent of
energy, we would not need to unfold the fractions
* Since the binned cross-section definition is working

under this assumption, one could try to justify not doing
this.



iteratively fit unfolding

* If the processes fractions do change in each bin, we
should unfold

* |deally the cross-section dependence is separate
from detector energy dependence.

* If the ratio between bins changes, then based on
the predicted cross-section change, the amount we
unfold by should also change.

* We could try this process iteratively.

* | propose we project the interaction unfolding from
energy, for simplicity with no iterative changes.



Alternate unfolding

* Probably not something we should do, but as an
idea | considered:

 Fit 2D probability distributions to the offset of the
initial and interaction energies.

* Throw many toys drawing from these distributions
e Gives central value and uncertainties.



Uncertainties

e Thin properly after getting central value sorted.

* RooUnfold uncertainties for 2D unfolding seem
tricky.

* Consider creating weights based on uncertainties
and running many toys.
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