First attempt at data-MC comparison for ColdBox PNS runs in Apr-2024

Wei

Preliminary PE comparison plots (Details of each component follow in next slides)

X-Arapucas in VD ColdBox PNS runs (Apr 2024)

C1-C4 numbering by detector installation team

Channel numbering scheme in LArSoft sim

Optical Channels			positions:
0	-5.42	187.2	186.701
1	-5.42	187.2	111.701
2	-15.387	-38	257.901
3	-15.387	118	186.701
4	-15.387	-118	111.701
5	-15.387	37.2	40.9009

Main Differences to Ajib's LArSoft Analysis

- Analysis mainly done using <u>Lardon</u> (independent framework to LArSoft)
 - (developed primarily by L. Zembelli)
 - language (Spacepoint based), especially when doing event selection
 - For PD: no waveform deconvolution (not sure LArSoft?)
 - (from Henrique)
- Focus on captures happening on top of each single cathode XA
 - cathode XAs

• A framework primarily used by CRP group for quick ColdBox data analyses in the past years

• Reco objects include pds peaks, blips and tracks in TPC), somewhat different to LArSoft • For my PNS analysis: PE is derived using channel ADC / ADC-per-SPE conversion factors

Ajib looks at all captures inside ColdBox by reconstructing positions from PD flashes based on 4

Run Statistics

- Run 25036: PNS, PDS + TPC, 70945 triggers (1ms window)
- Run 25068: PNS, PDS + TPC, 53817 triggers (1ms window)
- Run 25071: PNS, PDS + TPC, 38146 triggers (1ms window) -> PNS run (PDS + TPC) total: 162908 triggers
- Run 25004: cosmic run (no PNS), 22327 triggers (4ms window)
- Run 25066: cosmic run (no PNS), 56221 triggers (4ms window)
- Run 25078: cosmic run (no PNS), 51234 triggers (4ms window)
- Run 25084: cosmic run (no PNS), 33204 triggers (4ms window) no membrane pd
- Run 25086: cosmic run (no PNS), 90748 triggers (4ms window) no membrane pd -> Cosmic run (PDS + TPC) total: 253734 triggers

Background Processes

- Expect following 4 bkgs in a typical PNS run (and -> estimation methods):
 - Cosmics: ~ 50% anode-cathode crossing cosmics, the rest are cosmics entering from the side -> present in cosmic run -> Data driven estimation using cosmic runs data
 - Bkg outside active LAr: include captures @ buffer LAr (no instrument CRP/cathode), cryostat structure, etc -> Unique to PNS run -> Estimated from Paola's Fluka simulation
 - Gammas from beam neutron inelastic scattering -> Only look at both TPC + PD triggers after neutron beam stops
 - > Data driven estimation using cosmic runs data

• Ar39 radiological beta decay background (0.565 MeV) \rightarrow irreducible bkg -> present in cosmic run -

Neutron Capture Simulated Signal

- Simulated 1 million neutron captures (1capture/event) using Walker's G4 PNS simulation
 - PNS placed on the side of ColdBox, captures only inside active LAr
- - Voxel spans from 5cm-20cm above the center of a XA (in drift direction x)
 - Blue curve: +/- 30cm in y-z plane
 - Red curve: +/- 10cm in y-z plane

• Plot below is PE distribution from all captures in a voxel on the top of any of the 4 cathode XAs

PD Data Selection

- Calculate total PE per PD peak on each XA module
 - PD signal peaks on each XA 2 channels closest in time (*min_dt*):
 min_dt < 80ns (5 PD ticks)
 - Add total PE from each of the 2 channel (apply ADC/PE conversion factor)
- PD peaks selection
 - PE signals from capture are relatively large
 - Total PE > 100 PE per XA module
 - Remove saturated signals per channel ADC <14000
 - Neutron beam bkg rejection
 - Only look at PD peaks after last neutron pulse (run dependent)
 - Cosmic bkg rejection
 - Remove PD peaks that has 3d tracks within dt: dt < 70 tpc ticks (See backup: anode-cathode crossing cosmics delays up to 70 tpc ticks)

TPC Data Selection and Matching

- Capture related charge signals Use single hits (blips) collection
 - Single hits are those that are not used in tracks (>=2.5cm) reconstruction
 - - Make sure blips are well isolated (not from a certain track)
 - among three views

 - Identify all single hits on each XA and within **5cm-20cm drift**
 - 105 us
 - Single hit located +/- 30cm of XA center
- Matching: Each large PD peak has >=1 single hits in TPC matched
 - Matched TPC single hits are excluded in subsequent matching

• Transverse 2D distance (d_track_2D > 30cm, CRP default) between single hit and closest 2D track

• Single hit **barycenter-coordinate** (d_bary_max < 3cm, CRP default), this removes bad association

• tdc_max: Require collection Z plane time >= V induction plane time >= U induction plane time

• Single hit time within 105 of the PD peak: U induction plane hit time >= 0, collection Z plane <

Data-MC Comparison Caveats

Due to technical difficulties, some data selection isn't applied to some simualted components

- neutron bkg outside active LAr (Fluka)
 - No cosmic bkg rejection (no cosmic simulation)
 - No tpc and matching (no detailed tpc sim)
- Capture signal (G4)
 - No neutron beam bkg rejection (no beam sim)
 - No cosmic bkg rejection (no cosmic simulation)
 - No tpc and tpc-pds matching (no detailed tpc sim)

- nulation) m)
- m sim) nulation) ed tpc sim

PE comparison plots

Same MC-to-Data scale factors applied to each XA:

- cosmic run bkg: 0.642
- neutron bkg outside active LAr: 0.15
- capture signal: 0.005

Back up

3d-track anode-cathode crossing: PNS run 25036

100 PE threshold, trk length in drift direction >= 19 cm

3dtrk start t - C4 pd peak time

Zoom in plot of left plot Crossing tracks has up to 70 TPC ticks delay in time

Example PDS-TPC matched TPC blips: Neutron capture candidates on C2, C3

