Operations with
Configuration
Management for
OKS

Marco Roda

CCM - 22 January 2025

Overview

e Lastdiscussion was at the second day of the configuration workshop

e Since then we have an example of functionality that proves the feasibility
o Based on NPO2 - but there will be updates on this

e Today
o quick overview and some definitions
o Give entry points for code/documentation
o Describe procedure for conf developers
o Make some recommendations based on what we have learned so far

0 . arrow: relation
Git model overview

upstream

e Detailed description of the concept is here
o with comment privileges to highlight if something is not clear

o I'll try to condense this in a few slides for you to follow the rest
e Basicassumption (yet to be fully realised)
o We have a base repositories that stores the necessary items to create all ; N
the configurations: Configuration Object Dataset (COD) secondary

branch A branch B
o all the configurations are created using the objects in the COD

] simply linked to form the desired tree

(] the configurations live in a separate repository, called operation
o This basic assumption is not always true, this is a problem of the schema

[Reviews of the schema are encouraged

] Some already happening - trigger menu

https://docs.google.com/document/d/1vPCN9i99b6zDQVx1NJ2u24hCw-Y_oikJosKKet5Tod4/edit?usp=sharing

The shifter workflow

e The configurations we store are not all the possible combinations
o Weonlystore all-enabled configurations
o Shifters will have to
i. Retrieve the right configurations from operation
ii. through adedicated interface, activate/deactivate elements
iii. Runwith the xml files created by the interface

e Theuser interfaceis still under development, but it’s a cider-like interface
o Henryis working on this

e elements are all the things that can be activate/deactivated via the shifter interface
o resources - or a subset of them
o TPG (at some point)

(@)

ConfPool

-Repo
-base: Remote

Repos and interfaces -operation: Remote

+constructor(dir,operation_url,base_url)

+get_cods() const

+get_dag_versions() const
+get_confs(release:regex,key:regex=.*) const
+checkout_conf(release:string,conf:string): bool
+propagate_cod(base_ref,key:regex=.%*)
+tag(base_ref, key:regex=.%)

Base: https://gitlab.cern.ch/dune-dag/online/np02-configs-base
Operation: https://gitlab.cern.ch/dune-dag/online/np02-configs-operation
Scripts: https://gitlab.cern.ch/dune-dag/online/config-management

Base and Operation are repositories that are remotes of the same git repositories
o Thedifference between the two is in the branch and tag naming scheme
m base has the same branching scheme as any DAQ repo
m operation has a <dag-version>/<key> naming scheme for the branches and tags

The scripts, config-management, has a dunedaqg-like structure
o Butitlives on gitlab at the moment
o Forintegration with the textual editor, | believe it should be moved on github
m Opinions? Can this happen ASAP?
m Note, it requires adding a python dependency: gitpython

https://gitlab.cern.ch/dune-daq/online/np02-configs-base
https://gitlab.cern.ch/dune-daq/online/np02-configs-operation
https://gitlab.cern.ch/dune-daq/online/config-management

Why we think this will work?

e The baserepository has the role of making sure that objects are always interpreted correctly
o i.e. the objects respect the schema according to a particular version of the DAQ

e The configurations are a sort of default from which we specific configurations are added with a
“small” tweaks

e We expect that thanks to the shifter operations we only support at most 30 configurations per
detector
o Far less for coldboxes
o Of which just 2 or 3 are used daily

e This model will allow us to
o Store all the configurations
o allow the propagation of changes of the default using git features
o Easily recreate configurations from the COD in case of failures due to heavy changes of the schema

Configuration creation procedure

e Update of the COD
o If the new configuration requires new objects first add the objects
o The COD repo has the same tagging scheme as the other DAQ repos
(] develop
[user_name/<feature>
[prep_release/<version>
n patch/<version>

e Oncethe COD isready, new configuration(s) can be created in operation
o For the key of the configuration, please contact me and/or Wes
o user can develop their own configuration either on the COD repository (base) or on the operation
[But things should be kept on separate branches:
° One that simply adds the new object(s)
° One that updates the links

e We will take care of propagating the changes in the COD to all the other configurations
o We have tools for this operation

| essons learned

e What about NPO4? And the coldboxes?
o There are many possible ways to move forward and include everything in the same scheme

n couple of repos (base and operation) for every detector (NPO4, NPO2, HD coldbox, VD coldbox)
) Some redundancy but we will minimise the interference during operations

] A global two repo (base and operation) for everything
° Kind of extending the logic to the existing ehn1-config
° Less redundancy but there will be interference between the repos
° Will require a different naming scheme for branches to highlight the different setups

(] A single base repo with everything but separate operation repos
° In this way the number of branches in the will be contained to each repo

o This will be a trial and error
[Since we noticed that with the current COD it is easy to separate the repo, we are going for
° 1 Global base repo and separate operations
° We might decide to separate later

e Schemas should be written in a way that high level objects DON'T have parameters, only relations
o Ideally pushing all the parameters down to the lowest possible level, i.e. objects without relations

Reqguests / next step

e |t's time to make a decision: are we happy about what we can demonstrate?
o Whatis needed to agree that this is the plan?

e Move the COD repo on github

o Inorderto allow automatic operations/validations and to improve visibility

e Integration of the repo interface with textual editor
o Mainly to highlight issues

e Keep working on the automatic features of the configuration management
o COD propagation
o batchtagging

e Schema updates
o We need to move toward decoupling topology and settings in order to get the best out of this
management system

Backup

10

Database constraint

° The database contains about 700 objects
) We need to expose the different configurations in an easy way

° Reminder of the current system functionality
o Structure: session -> segments -> application and other items -> ... -> small low level objects
o When a change in the configuration happens at a low level:
[Use a configuration object instead of another
o all the chain up to the session level has to be duplicated if we want to select this as a session object
[The objects must have unique ids
[The combinatory will kill us: imagine to debug something that has tens of thousands of objects with names like
“low-threshold-long-readout-window-beam-daphne-4-channel-27-conf”
o additional objects are created by run control via the SmartDAQApps
[Impossible to debug and to guarantee uniqueness and clarity of the names

° We need a system where the low level objects are multiple but only some are associated with the configuration tree
o The others are just ready for the expert to add them in
(] The assumption is that if an object has been added, it’s also tested
o The high level objects will not be duplicated
[sessions, segments, applications
o This is a sort of dropdown menu logic
(] This is a guideline
[It does not mean they should be disregarded lightly
[Sometimes we need to create configuration quickly!
. This is a way to make it possible

11

The git model

° There will be 2 repositories

One used for development and tagged with the release

let’s call it config-base, for the sake of this discussion

The configuration hosted here will be an “all-in” configuration that has to work
The configuration is the “best” default we can come up with every substem

o

o

Ideally a running configuration, not a calibration
Detector/subsystem experts should have a say in which configuration to store there

The role of this repo is to have a base for all the configurations that we are able to run
This repo is where detector experts will upload their configuration objects

If an object is in here it must have been tested

One used for storing the actual configurations so that they can be easily retrieved by shifters
let’s call it config-operation

This is a repository aligned with config-base, config-base has to be an upstream repo
With branch names organised

main -> aligned with develop in config base
operation/<physical name>

<version>/<physical name> for past versions
<author>/<physical name> for expert to develop configuration

This is mainly managed by DAQ experts
The configurations here are not including the variation due to removing components

This is done via the shifter interface tool described by Wes in the previous talk
The branches here corresponds to the configurations listed in the tool
you can imagine easily mapping git commands onto the functions Wes described in his slides

° Actions needs to be in place to have some level of automated validation
Moving at least config-base to github seems best

[e]

12

Workflow - configuration creation

e Theideahereis that all configurations will be a default + few tweaks

o

This has been proved generally true in the past

e Thetweak, ideally, is a linking of the right objects in the chain

(@)

Not the creation of a new object

e Operation

o

An expert, checks out locally the develop of config-base or the main of config-operation
= (or the most similar branch among those already available)

Using DBE, the required objects are linked to the relevant objects of the chain
m DBE hereis preferred as it’s type safe and well developed for batch changes

A branch is created with the name of the author in config-operation

Test

Creation of the final branch in operation/<physics name>

13

Workflow - adding or removing configuration
objects

e New objects at any level (sessions, segments, applications, conf objects, etc) should be added to the

develop branch of config-base
o Using the normal rules of the git repos
[using prep-release and patch branches when necessary

e The addition has to be propagated to all the branches
o As it’s a simple addition the merge should be fast forward
o Action: we need to develop scripts to do batch merges
(] Merges using regex should be supported

e Configurations that will need to rely on the new object should be updated to link to the new objects
o At least one test branch is required

e develop can also be updated if necessary if a link is necessary

e Adding (and linking) new configuration objects is something that mostly detector expert will need to do
o This happens often after calibration or as a result of firmware change
o Sometime is necessary to remove objects as well in case they become deprecated
[e.g. something not allowed anymore after a firmware update

14

Workflow - release tag

Config-base really needs to be tagged as frequently as the the code release

o It's extremely tied to the code due to the object usage
[Very different workflow with respect to v4 line
[It was a big mistake that we didn’t do it for v5.2.0
. I hope a dedicate fix/discussion is happening

config-operation can be tagged

o With a new release

o With changes in the connection/detector: a tag for config-operation will probably have 4 numbers
[or 3number and a date

o Ideally the description of the detector would be independent from the version of the code
[But our description is based on the schema objects so this is a necessary evil

What we learned from NPO4 is that some operations often require adaptation in the configuration code (we have
O(10) patches for v4.4)

o Whatever release we are going to use for NP02, patches driven by configuration are expected

Following the tag of config-base, in config-operation
o All the branches in main have to be tagged renamed with <version>/<physical name>
o Action: scripting for these are required

15

workflow - calibration

e Operation run by detector/subsystem expert
o ltclearlyinvolves aloop
m Theloop logicis currently (NPO4) managed by the expert
m Soitis expected for NPO2
m Butinthelongrun we think DAQ should provide some support

e Operations

o experts will start from a calibration configuration from config-operation
m It canbecreated ad-hoc
m Expert shall come forth with request to maintain this configuration on the repo
m The configuration does not host all the different variations of the scan

e it'sjust the starting point

o Experts will maintain tools that will loop in different configuration

m most likely these tools will call some of our scripts to update the configuration

16

Workflow - calibration: comments

When developing interfaces with detector experts this operation needs to be discussed

o

(@)

Tools to create configuration should accommodate this operation
Please take care of these tool

Available tools

o

in the future we might want to consider available tools to generate configuration in
multi-dimentional spaces to do these sort of operations

Plenty of material out there used for MC tuning as well

Some tools | would like to mention: Professor, Apprentice

| think these workflows should be considered when developing tools to support calibration
operation on DAQ side

17

https://professor.hepforge.org/
https://github.com/HEPonHPC/apprentice

Roles of the scripts

° Scripts should be used by experts to create configuration to upload on config-base or config-operation
o Not for shifters
o Not for daily operations

° Notable use cases

o Following an update in the schema an entire segment has to be recreated with all the links
[Since there are a lot of objects a script is probably useful
[Also useful in case of catastrophic loss of a configuration
o Calibration
[Used in the loop over the parameter space
[These scripts (hopefully no more than one per subsystem) should be part of the contract with the detector experts
[open question: where do we maintain them? My personal answer: detector specific repos

o Adding new configuration objects following calibration
[Mostly used by experts
[They probably coincide with the calibration scripts
[But they are followed up by some PRs on config-base

° Some comments

o If an entire script had to be used to create a configuration out of config-base, the schema for the configuration would be poorly
designed
o Reminder: The creation of a schema should be a matter of linking objects

18

Some comments on the model

e Expected number of branches
o The number of combinations in the v4 database was insane: on top of the different configurations, we had to
consider all the combinations of components as well

o In this model as the shifter decides what is enabled (or rather disabled) this is not something we provide via the
available configurations

[just for the 4 APAs, we had 16 combinations

o | don’t think we will maintain more than 30 branches at anytime
[Most likely only 5 will be used often

o The combinatory that will still affect us is the one among multiple systems:
[TPGThreshold x PDS thresholds

° Maybe it's time to start putting down a list?

o | haven’t, but that can be follow up item for Wes and |
o We have some material already

e Iftheidea of the linking concept is well established creating a missing configuration is a matter of minutes
o Creating a new configuration in the previous system was NOT a matter of minutes

19

The Daphne example

e Thedaphne configuration is a very good example of all the operation we need to support:
It will have a number of configurations: cosmic run, calibration, data taking with laser

It requires calibration periodically

Firmware changes require code and configuration update

The board themselves have different hardware versions

o

O O O

e Abitof context
o The application is a smart DAQ application, each one has an associated DapheConf object
o Regardless of the number of applications and/or daphne used in the system, the DapheConf object is
always the same

m There will be one daphne object by daphne experts using scripts developed by DAQ people
o Between DAQ and PDS consortia we have a “contract”

m The configuration they produce is in a json format that we digest using the script

° Essentially create a wrapper object around the json that we store in our database

e Configuration management
o There will be a 1-to-1 relations between the available DaphenConf object and the branches
m When anew object is added, we have to create a new branch
m When an old object becomes obsolete, we remove a branch and the object from every branch

20

The daphne example - calibration

e Thecalibration should proceed more or less in this way

o Experts will start from the calibration configuration, available among the branches

m Still contains only one parameter value, but all the constant parameters will be in the
configuration valid for the calibration procedure

o They will have a loop to
m generate the new contract json file
m addthe contract file to the calibration configuration using the available scripts
m runwithRC

21

Some action items/follow ups

° https://twiki.cern.ch/twiki/bin/view/CENF/DAQV50perations
o Not linked to the main ProtoDUNE page yet
o This should evolve to be a library of the workflows for the operations for shifters

° We have a working VNC maintained by Alec in np04
o Very useful for experts to develop configurations
o Please contact Alec to gain access

. Documentation

o The only documentation on SmartDAQApplication is quite poor and oriented to low level details
o Some of what has been discussed here should be added
o | can volunteer but I'm not the designed of the SmartDAQApp, just a consumer. Is it enough?

° Feedback on errors

o SmartDAQapplicaiton have a generate_module which is written in C++ but it’s called by a python
o When everything is fine, there are no issues
o When the C++ code throws exceptions we lose a lot of information because we only have a stack trace
] ERS messages (if generated) are not propagated because the application itself is not on
= But the controller is, so here there is room for improvement to make sure the ERS messages are not lost
. Feedback on enable disable mechanism

o
o

It’s logically clear
But the tools to disable/enable are not ok

cider only works well for top level objects, for nested objects like stream it’s not clear why it does not work
DBE seems to not allow enable/disable

22

https://twiki.cern.ch/twiki/bin/view/CENF/DAQV5Operations

Conclusion

| proposed a model for maintain the configurations
o With examples from a new subsystem
o Do we have database operations that are completely absent from this example that we expect to do?

Missing work was highlighted
o | don’t think it’s much work
o One is urgent though as it’s functionality it should have already been in place

Unclear how this scales in the long term
o | only highlighted that we should enhance support for calibration
o Other than that | think we should use this idea for NPO2 and decide after we gained experience there

What are the next steps?
o Clearly this is a provocation, | don’t expect a full answer now
o We probably need to digest a lot of this information

23

