
Operations with 
Configuration 
management for 
OKS

Marco  Roda

CCM - 22 January 2025



Overview

● Last discussion was at the second day of the configuration workshop

● Since then we have an example of functionality that proves the feasibility
○ Based on NP02 - but there will be updates on this

● Today
○ quick overview and some definitions

○ Give entry points for code/documentation

○ Describe procedure for conf developers

○ Make some recommendations based on what we have learned so far

2



Git model overview

● Detailed description of the concept is here 
○ with comment privileges to highlight if something is not clear

○ I’ll try to condense this in a few slides for you to follow the rest

● Basic assumption (yet to be fully realised)
○ We have a base repositories that stores the necessary items to create all 

the configurations: Configuration Object Dataset (COD)

○ all the configurations are created using the objects in the COD

■ simply linked to form the desired tree

■ the configurations live in a separate repository, called operation

○ This basic assumption is not always true, this is a problem of the schema

■ Reviews of the schema are encouraged 

■ Some already happening - trigger menu

3

circles: objets
arrow: relation

https://docs.google.com/document/d/1vPCN9i99b6zDQVx1NJ2u24hCw-Y_oikJosKKet5Tod4/edit?usp=sharing


The shifter workflow

● The configurations we store are not all the possible combinations
○ We only store all-enabled configurations

○ Shifters will have to

i. Retrieve the right configurations from operation

ii. through a dedicated interface, activate/deactivate elements

iii. Run with the xml files created by the interface

● The user interface is still under development, but it’s a cider-like interface
○ Henry is working on this

● elements are all the things that can be activate/deactivated via the shifter interface
○ resources - or a subset of them

○ TPG (at some point)

○ …

4



Repos and interfaces

● Base: https://gitlab.cern.ch/dune-daq/online/np02-configs-base
● Operation: https://gitlab.cern.ch/dune-daq/online/np02-configs-operation
● Scripts: https://gitlab.cern.ch/dune-daq/online/config-management

● Base and Operation are repositories that are remotes of the same git repositories
○ The difference between the two is in the branch and tag naming scheme

■ base has the same branching scheme as any DAQ repo
■ operation has a <daq-version>/<key> naming scheme for the branches and tags

● The scripts, config-management, has a dunedaq-like structure 
○ But it lives on gitlab at the moment
○ For integration with the textual editor, I believe it should be moved on github

■ Opinions? Can this happen ASAP? 
■ Note, it requires adding a python dependency: gitpython

5

https://gitlab.cern.ch/dune-daq/online/np02-configs-base
https://gitlab.cern.ch/dune-daq/online/np02-configs-operation
https://gitlab.cern.ch/dune-daq/online/config-management


Why we think this will work?

● The base repository has the role of making sure that objects are always interpreted correctly
○ i.e. the objects respect the schema according to a particular version of the DAQ

● The configurations are a sort of default from which we specific configurations are added with a 
“small” tweaks

● We expect that thanks to the shifter operations we only support at most 30 configurations per 
detector
○ Far less for coldboxes
○ Of which just 2 or 3 are used daily

● This model will allow us to
○ Store all the configurations 
○ allow the propagation of changes of the default using git features
○ Easily recreate configurations from the COD in case of failures due to heavy changes of the schema

6



Configuration creation procedure

● Update of the COD
○ If the new configuration requires new objects first add the objects
○ The COD repo has the same tagging scheme as the other DAQ repos

■ develop
■ user_name/<feature>
■ prep_release/<version>
■ patch/<version>

● Once the COD is ready, new configuration(s) can be created in operation
○ For the key of the configuration, please contact me and/or Wes
○ user can develop their own configuration either on the COD repository (base) or on the operation

■ But things should be kept on separate branches:
● One that simply adds the new object(s)
● One that updates the links

● We will take care of propagating the changes in the COD to all the other configurations
○ We have tools for this operation

7



Lessons learned

● What about NP04? And the coldboxes?
○ There are many possible ways to move forward and include everything in the same scheme

■ couple of repos (base and operation) for every detector (NP04, NP02, HD coldbox, VD coldbox)
● Some redundancy but we will minimise the interference during operations

■ A global two repo (base and operation) for everything 
● Kind of extending the logic to the existing ehn1-config
● Less redundancy but there will be interference between the repos
● Will require a different naming scheme for branches to highlight the different setups

■ A single base repo with everything but separate operation repos
● In this way the number of branches in the will be contained to each repo 

○ This will be a trial and error
■ Since we noticed that with the current COD it is easy to separate the repo, we are going for

● 1 Global base repo and separate operations
● We might decide to separate later

● Schemas should be written in a way that high level objects DON’T have parameters, only relations
○ Ideally pushing all the parameters down to the lowest possible level, i.e. objects without relations

8



Requests / next step

● It’s time to make a decision: are we happy about what we can demonstrate?
○ What is needed to agree that this is the plan?

● Move the COD repo on github
○ In order to allow automatic operations/validations and to improve visibility

● Integration of the repo interface with textual editor 
○ Mainly to highlight issues 

● Keep working on the automatic features of the configuration management
○ COD propagation
○ batch tagging 

● Schema updates
○ We need to move toward decoupling topology and settings in order to get the best out of this 

management system

9



Backup

10



Database constraint
● The database contains about 700 objects

● We need to expose the different configurations in an easy way

● Reminder of the current system functionality
○ Structure: session -> segments -> application and other items -> … -> small low level objects
○ When a change in the configuration happens at a low level:

■ Use a configuration object instead of another
○ all the chain up to the session level has to be duplicated if we want to select this as a session object

■ The objects must have unique ids
■ The combinatory will kill us: imagine to debug something that has tens of thousands of objects with names like 

“low-threshold-long-readout-window-beam-daphne-4-channel-27-conf”
○ additional objects are created by run control via the SmartDAQApps

■ Impossible to debug and to guarantee uniqueness and clarity of the names

● We need a system where the low level objects are multiple but only some are associated with the configuration tree
○ The others are just ready for the expert to add them in

■ The assumption is that if an object has been added, it’s also tested
○ The high level objects will not be duplicated

■ sessions, segments, applications
○ This is a sort of dropdown menu logic

■ This is a guideline 
■ It does not mean they should be disregarded lightly
■ Sometimes we need to create configuration quickly!

● This is a way to make it possible

11



The git model

● There will be 2 repositories
○ One used for development and tagged with the release

■ let’s call it config-base, for the sake of this discussion
■ The configuration hosted here will be an “all-in” configuration that has to work
■ The configuration is the “best” default we can come up with every substem

● Ideally a running configuration, not a calibration
● Detector/subsystem experts should have a say in which configuration to store there

■ The role of this repo is to have a base for all the configurations that we are able to run
■ This repo is where detector experts will upload their configuration objects

● If an object is in here it must have been tested

○ One used for storing the actual configurations so that they can be easily retrieved by shifters
■ let’s call it config-operation
■ This is a repository aligned with config-base, config-base has to be an upstream repo
■ With branch names organised

● main -> aligned with develop in config base 
● operation/<physical name> 
● <version>/<physical name> for past versions
● <author>/<physical name> for expert to develop configuration

■ This is mainly managed by DAQ experts
■ The configurations here are not including the variation due to removing components

● This is done via the shifter interface tool described by Wes in the previous talk
● The branches here corresponds to the configurations listed in the tool
● you can imagine easily mapping git commands onto the functions Wes described in his slides

● Actions needs to be in place to have some level of automated validation
○ Moving at least config-base to github seems best

12



Workflow - configuration creation

● The idea here is that all configurations will be a default + few tweaks
○ This has been proved generally true in the past

● The tweak, ideally, is a linking of the right objects in the chain
○ Not the creation of a new object

● Operation
○ An expert, checks out locally the develop of config-base or the main of config-operation

■ (or the most similar branch among those already available) 
○ Using DBE, the required objects are linked to the relevant objects of the chain

■ DBE here is preferred as it’s type safe and well developed for batch changes
○ A branch is created with the name of the author in config-operation
○ Test
○ Creation of the final branch in operation/<physics name>

13



Workflow - adding or removing configuration 
objects

● New objects at any level (sessions, segments, applications, conf objects, etc) should be added to the 
develop branch of config-base

○ Using the normal rules of the git repos
■ using prep-release and patch branches when necessary

● The addition has to be propagated to all the branches 
○ As it’s a simple addition the merge should be fast forward
○ Action: we need to develop scripts to do batch merges

■ Merges using regex should be supported

● Configurations that will need to rely on the new object should be updated to link to the new objects
○ At least one test branch is required 

● develop can also be updated if necessary if a link is necessary

● Adding (and linking) new configuration objects is something that mostly detector expert will need to do
○ This happens often after calibration or as a result of firmware change
○ Sometime is necessary to remove objects as well in case they become deprecated

■ e.g. something not allowed anymore after a firmware update

14



Workflow - release tag

● Config-base really needs to be tagged as frequently as the the code release
○ It’s extremely tied to the code due to the object usage

■ Very different workflow with respect to v4 line
■ It was a big mistake that we didn’t do it for v5.2.0

● I hope a dedicate fix/discussion is happening

● config-operation can be tagged 
○ With a new release 
○ With changes in the connection/detector: a tag for config-operation will probably have 4 numbers

■ or 3 number and a date
○ Ideally the description of the detector would be independent from the version of the code

■ But our description is based on the schema objects so this is a necessary evil

● What we learned from NP04 is that some operations often require adaptation in the configuration code (we have 
O(10) patches for v4.4)

○ Whatever release we are going to use for NP02, patches driven by configuration are expected

● Following the tag of config-base, in config-operation
○ All the branches in main have to be tagged renamed with <version>/<physical name>
○ Action: scripting for these are required

15



workflow - calibration

● Operation run by detector/subsystem expert
○ It clearly involves a loop 

■ The loop logic is currently (NP04) managed by the expert
■ So it is expected for NP02
■ But in the long run we think DAQ should provide some support

● Operations
○ experts will start from a calibration configuration from config-operation

■ It can be created ad-hoc
■ Expert shall come forth with request to maintain this configuration on the repo
■ The configuration does not host all the different variations of the scan

● it’s just the starting point
○ Experts will maintain tools that will loop in different configuration

■ most likely these tools will call some of our scripts to update the configuration

16



Workflow - calibration: comments

● When developing interfaces with detector experts this operation needs to be discussed
○ Tools to create configuration should accommodate this operation

○ Please take care of these tool 

● Available tools
○ in the future we might want to consider available tools to generate configuration in 

multi-dimentional spaces to do these sort of operations

○ Plenty of material out there used for MC tuning as well

○ Some tools I would like to mention: Professor, Apprentice

○ I think these workflows should be considered when developing tools to support calibration 

operation on DAQ side 

17

https://professor.hepforge.org/
https://github.com/HEPonHPC/apprentice


Roles of the scripts

● Scripts should be used by experts to create configuration to upload on config-base or config-operation
○ Not for shifters 
○ Not for daily operations

● Notable use cases
○ Following an update in the schema an entire segment has to be recreated with all the links

■ Since there are a lot of objects a script is probably useful
■ Also useful in case of catastrophic loss of a configuration

○ Calibration
■ Used in the loop over the parameter space
■ These scripts (hopefully no more than one per subsystem) should be part of the contract with the detector experts 
■ open question: where do we maintain them? My personal answer: detector specific repos

○ Adding new configuration objects following calibration
■ Mostly used by experts
■ They probably coincide with the calibration scripts
■ But they are followed up by some PRs on config-base 

● Some comments
○ If an entire script had to be used to create a configuration out of config-base, the schema for the configuration would be poorly 

designed
○ Reminder: The creation of a schema should be a matter of linking objects

18



Some comments on the model

● Expected number of branches
○ The number of combinations in the v4 database was insane: on top of the different configurations, we had to 

consider all the combinations of components as well
○ In this model as the shifter decides what is enabled (or rather disabled) this is not something we provide via the 

available configurations 
■ just for the 4 APAs, we had 16 combinations 

○ I don’t think we will maintain more than 30 branches at anytime
■ Most likely only 5 will be used often

○ The combinatory that will still affect us is the one among multiple systems:
■ TPGThreshold x PDS thresholds

● Maybe it’s time to start putting down a list?
○ I haven’t, but that can be follow up item for Wes and I
○ We have some material already 

● If the idea of the linking concept is well established creating a missing configuration is a matter of minutes
○ Creating a new configuration in the previous system was NOT a matter of minutes

19



The Daphne example

● The daphne configuration is a very good example of all the operation we need to support:
○ It will have a number of configurations: cosmic run, calibration, data taking with laser
○ It requires calibration periodically
○ Firmware changes require code and configuration update
○ The board themselves have different hardware versions

● A bit of context
○ The application is a smart DAQ application, each one has an associated DapheConf object
○ Regardless of the number of applications and/or daphne used in the system, the DapheConf object is 

always the same
■ There will be one daphne object by daphne experts using scripts developed by DAQ people

○ Between DAQ and PDS consortia we have a “contract”
■ The configuration they produce is in a json format that we digest using the script

● Essentially create a wrapper object around the json that we store in our database

● Configuration management
○ There will be a 1-to-1 relations between the available DaphenConf object and the branches

■ When a new object is added, we have to create a new branch
■ When an old object becomes obsolete, we remove a branch and the object from every branch

20



The daphne example - calibration

● The calibration should proceed more or less in this way
○ Experts will start from the calibration configuration, available among the branches

■ Still contains only one parameter value, but all the constant parameters will be in the 

configuration valid for the calibration procedure

○ They will have a loop to 

■ generate the new contract json file

■ add the contract file to the calibration configuration using the available scripts

■ run with RC

21



Some action items/follow ups

● https://twiki.cern.ch/twiki/bin/view/CENF/DAQV5Operations
○ Not linked to the main ProtoDUNE page yet
○ This should evolve to be a library of the workflows for the operations for shifters

● We have a working VNC maintained by Alec in np04
○ Very useful for experts to develop configurations
○ Please contact Alec to gain access

● Documentation
○ The only documentation on SmartDAQApplication is quite poor and oriented to low level details
○ Some of what has been discussed here should be added 
○ I can volunteer but I’m not the designed of the SmartDAQApp, just a consumer. Is it enough?

● Feedback on errors 
○ SmartDAQapplicaiton have a generate_module which is written in C++ but it’s called by a python
○ When everything is fine, there are no issues
○ When the C++ code throws exceptions we lose a lot of information because we only have a stack trace

■ ERS messages (if generated) are not propagated because the application itself is not on
■ But the controller is, so here there is room for improvement to make sure the ERS messages are not lost

● Feedback on enable disable mechanism
○ It’s logically clear
○ But the tools to disable/enable are not ok

■ cider only works well for top level objects, for nested objects like stream it’s not clear why it does not work
■ DBE seems to not allow enable/disable

22

https://twiki.cern.ch/twiki/bin/view/CENF/DAQV5Operations


Conclusion

● I proposed a model for maintain the configurations
○ With examples from a new subsystem
○ Do we have database operations that are completely absent from this example that we expect to do?

● Missing work was highlighted 
○ I don’t think it’s much work
○ One is urgent though as it’s functionality it should have already been in place

● Unclear how this scales in the long term
○ I only highlighted that we should enhance support for calibration 
○ Other than that I think we should use this idea for NP02 and decide after we gained experience there

● What are the next steps?
○ Clearly this is a provocation, I don’t expect a full answer now
○ We probably need to digest a lot of this information

23


