Geometric Efficiency Correction – UPDATE

January 22nd, 2024

Ioana Caracas

Geometric Efficiency within PRISM framework

To get the **average geometric efficiency of a FD event at the ND:** add all VisEtrim (Etrim + Emu) histograms and linearly combine them

Each entry in these histograms = passing throw (rotation, y, z) for **hadronic cut**

– each passing throw has a corresponding **muon geometric efficiency:** probability muon contained

 \rightarrow apply this probability: N(Etrim, throw) * P(Emu, throw)

Each entry in these histograms = passing throw (rotation, y, z) for **hadronic cut**

- each passing throw has a corresponding muon geometric efficiency: probability muon contained
- \rightarrow apply this probability: N(Etrim, throw) * P(Emu, throw)

1. Take the muon probability and apply it to each entry in the histogram

- different distribution (I.e if Pmu = $0 \rightarrow$ no event in the histo)

– visEtrim (= hadE_trim + Emu) distribution of FD events that would be seen (both hadronic veto and muon) by the ND at a given vtx_x

Each entry in these histograms = passing throw (rotation, y, z) for **hadronic cut**

- each passing throw has a corresponding muon geometric efficiency: probability muon contained
- \rightarrow apply this probability: N(Etrim, throw) * P(Emu, throw)

1. Take the muon probability and apply it to each entry in the histogram

- different distribution (I.e if Pmu = $0 \rightarrow$ no event in the histo)

– visEtrim (= hadE_trim + Emu) distribution of FD events that would be seen (both hadronic veto and muon) by the ND at a given vtx_x

THEN: proceed as before (apply OA coeffs and add together all visEtrim histograms \rightarrow **distribution of FD events that would be seen** (both hadronic veto and muon) **by the ND** – compare to the **linear combination of (ND data - bkg)**

Event_4 E_=4.390517 LepMom=1.381705

HadE trim distribution of throws that pass hadronic veto cut at vtx_x = -14.75

- integral = 0.14 (HaddEff(-14.75))
- entries = 567 (passing throws)

Integral of this histogram = hadron geo eff at vtxX

HadE trim distribution of throws that pass hadronic veto cut and muon (contained || tracker) cut at vtx_x = -14.75

- integral = 0.07 (Combined Eff(-14.75))
- entries = 567 (passing throws)

Integral of this histogram = ND (had + mu) geo eff at vtxX

Integral of this histogram = ND (had + mu) geo eff at vtxX

Efficiency

Distribution of all FD events as seen in the ND (hadron efficiency corrected)

- 10 FD events selected and translated to the ND
 - \rightarrow calculate the final ND Etrim distribution for each of the events and add them together to see their distribution in the ND
 - detector position sampling same as the ND CAFs
 - 10 events in FD

ND Events distribution of FD Events as seen in the ND (efficiency corrected)

Geometric efficiency – first results with higher statistics

 $\rightarrow 87\,656$ FD events selected and translated to the ND (~ 10 % of simulated FD events pass selection)

Selection Cuts:

– event has to have muon/hadronic

Geometric efficiency – first results with higher statistics: mu + hadron combined

Distribution of all FD events as

 \rightarrow **87656 FD events selected and translated to the ND** (~ 10 % of simulated FD events pass selection)

Geometric efficiency – first results with higher statistics: mu + hadron combined

 $\rightarrow 87\,656$ FD events selected and translated to the ND (~ 10 % of simulated FD events pass selection)

Distribution of all FD events as seen in the ND

– final fit / comparison between (ND – Bkg) * Coeff and Distrib of all FD Events as seen in the ND