
Jovan Mitrevski for the hls4ml team
CSAID AI Jamboree
January 30, 2025

Summary of hls4ml release 1.0

CSAID AI Jamboree - Jan. 30, 2025

• hls4ml is a compiler, converting Keras, PyTorch, or ONNX to HLS
• The “backend” can be changed. Although non-HLS backends exist, hls4ml generally

produces HLS for Vitis HLS, oneAPI, or Catapult.
• (Vivado HLS and Intel HLS also supported, but no longer a focus of development)

• Produces spatial dataflow code specific to the program at hand (not systolic array)

hls4ml introduction

2

2018 JINST 13 P07027
2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in figure 1.

�����������
�����

���
��
���������!�
	"������

#

�������������
����
�����������

��������������

��
��
�������

��
��
��� ������

��������������������

�����������!
���
������

�����

���
���
��������
�������
����!
���!������!

hls 4 ml

hls4ml

HLS 4 ML

Figure 1. A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in section 2.3) before settling on a final model. The blue section of the workflow is the task
of hls4ml, which translates a model into an HLS project that can be synthesized and implemented
to run on an FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second
at a relatively low power cost with respect to CPUs and GPUs. However, such operations consume
dedicated resources onboard the FPGA and cannot be dynamically remapped while running. The
challenge in creating an optimal FPGA implementation is to balance FPGA resource usage with
achieving the latency and throughput goals of the target algorithm. Key metrics for an FPGA
implementation include:

1. latency, the total time (typically expressed in units of “clocks”) required for a single iteration
of the algorithm to complete.

2. initiation interval, the number of clock cycles required before the algorithm may accept
a new input. Initiation interval (often expressed as “II”) is inversely proportional to the
inference rate, or throughput; an initiation interval of 2 achieves half the throughput as an
initiation interval of 1. Consequently, data can be pipelined into the algorithm at the rate of
the initiation interval.

– 4 –

CSAID AI Jamboree - Jan. 30, 2025

• io_parallel: all data from one event is transferred in parallel between the layers
• good for smaller models without skip connections

• io_stream: data is transferred one pixel at a time (sending all channels in parallel)
• generally used for CNN models. (For 1D MLPs, all inputs are still sent in parallel)
• FIFOs are used between the layers
• useful for larger models and for skip connections

Reminder: two styles of sending data between layers

3

CSAID AI Jamboree - Jan. 30, 2025

• Although experimental Vitis HLS existed before, its performance was not up to
Vivado HLS level.

• Starting with Vitis HLS 2022.2, the performance issues have been fixed
• We now support Vitis HLS 2022.2 or later (focusing on 2023.2 or later)
• Fully supported is the Vivado IP flow; the accelerator flow exists in a pull request
• The FIFO depth optimization algorithm that we supported for Vitis HLS exists in a

pull request, not in the release
• As an aside, Vitis provides more tools for setting the FIFO sizes

Updated backend, Vitis HLS

4

CSAID AI Jamboree - Jan. 30, 2025

• The HLS code from the former “Quartus”, really Intel HLS, backend, served as the
basis for a new oneAPI backend.
• oneAPI release 2025.0 is the supported version (2024.x versions may work)
• (Due to the Altera spinoff, 2025.0 will be the version to use for a while. OneAPI

FPGA compiler responsibility will transition from Intel to Altera.)
• The HLS (IP) flow is currently the only flow supported. In the future, we would like

to support the accelerator flow, too.
• oneAPI is SYCL-based, so the HLS is treated as a SYCL kernel

• The “host code” becomes the testbench

New backend: oneAPI

5

CSAID AI Jamboree - Jan. 30, 2025

• The software had to change because of the SYCL interface
• Explicit pipe is used for input and output for both io_stream and io_parallel
• Each pipe is synthesized to a conduit with it’s own handshaking (not just the

component’s)
• There is a preference for std::array over C-style arrays per suggestion by Intel.
• Nevertheless, io_parallel should produce roughly the same results as it would have

had with Intel HLS.
• io_stream now explicitly implements the “dataflow” style we use in the Vitis and

Vivado backends.
• Before, we never used “dataflow” with Intel.

oneAPI backend differences (vs Quartus—Intel HLS)

6

CSAID AI Jamboree - Jan. 30, 2025

io_stream “dataflow” style

7

void Myproject::operator()() const {

 // hls-fpga-machine-learning declare task sequences
 task_sequence<nnet::dense_resource_stream<Fc1InputPipe, Layer2OutPipe, config2>> fc1;
 task_sequence<nnet::relu_stream<Layer2OutPipe, Layer4OutPipe, relu_config4>> relu1;
 task_sequence<nnet::dense_resource_stream<Layer4OutPipe, Layer5OutPipe, config5>> fc2;
 task_sequence<nnet::relu_stream<Layer5OutPipe, Layer7OutPipe, relu_config7>> relu2;
 task_sequence<nnet::dense_resource_stream<Layer7OutPipe, Layer8OutPipe, config8>> fc3;
 task_sequence<nnet::relu_stream<Layer8OutPipe, Layer10OutPipe, relu_config10>> relu3;
 task_sequence<nnet::dense_resource_stream<Layer10OutPipe, Layer11OutPipe, config11>> output;
 task_sequence<nnet::softmax_stream<Layer11OutPipe, Layer13OutPipe, softmax_config13>> softmax;

 // hls-fpga-machine-learning insert layers

 fc1.async(w2, b2);
 relu1.async();
 fc2.async(w5, b5);
 relu2.async();
 fc3.async(w8, b8);
 relu3.async();
 output.async(w11, b11);
 softmax.async();

}

CSAID AI Jamboree - Jan. 30, 2025

• Siemens EDA Catapult is widely used for ASIC design, and also FPGAs from
various companies (include eFPGAs)

• A big effort was made (generally by Siemens employees) to port the Vivado HLS
code to Catapult, with our support

• Functionality is generally on par with Vivado and Vitis HLS
• Note: one needs to use the hls4ml packaged with Catapult—currently the Catapult

code packaged with hls4ml is missing the pragmas
• Changes may come to this

New backend: Catapult

8

CSAID AI Jamboree - Jan. 30, 2025

• One of the products of the cooperation with the FINN
group has been proposing a simple but flexible method to
represent uniform quantization in ONNX: QONNX
– lightweight: only 3 operators (Quant, BipolarQuant,

Trunc)
– abstract: not tied to any implementation

• Fused quantize-dequantize (QDQ) format

where s is scale and z is zero offset.

quantize(x) = clamp (round (x
s

+ z), ymin, ymax)
dequantize(y) = s(y − z)

QONNX parsing

9

https://arxiv.org/abs/2206.07527
https://arxiv.org/abs/2206.07527

CSAID AI Jamboree - Jan. 30, 2025

• As part of our collaboration with the FINN group, we made a package of common
utilities, https://github.com/fastmachinelearning/qonnx
– constant folding, shape inference, etc.—“cleaning”

• when parsing ONNX can assume we know the shape
– channels-first to channels-last conversion for CNNs

• do not need to support channels-first in hls4ml for ONNX
– Other common utilities, like Gemm to MatMul and Add

• do not need to support Gemm explicitly in hls4m
– Evaluate QONNX graphs for functional analysis

qonnx package

10

https://github.com/fastmachinelearning/qonnx
https://github.com/fastmachinelearning/qonnx

CSAID AI Jamboree - Jan. 30, 2025

Quant and BipolarQuant nodes

11

TABLE II
THE NEW QUANTIZATION OPERATORS IN THE QONNX STANDARD FORMAT.

Quant: calculate the quantized values of one input tensor and produces one output data tensor.

Attributes:
• signed (boolean): defines whether the target quantization interval is signed or not.
• narrow (boolean): defines whether the target quantization interval should be narrowed by 1. For example, at 8 bits if signed is true

and narrow is false, the target is [�128, 127] while if narrow is true, the target is [�127, 127].
• rounding_mode (string): defines how rounding should be computed during quantization. Currently available modes are: ROUND,

ROUND_TO_ZERO, CEIL, FLOOR, with ROUND implying a round-to-even operation.

Inputs:
• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to broadcast with x.
• bit_width (int, float32): the bit width for quantization, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

BipolarQuant: calculate the binary quantized values of one input tensor and produces one output data tensor.

Attributes: None
Inputs:

• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

Trunc: truncate the least significant bits (LSBs) of a quantized value, with the input’s scale and zero_point preserved.

Attributes:
• rounding_mode (string): defines how rounding should be computed during truncation. Currently available modes are: ROUND, CEIL,

and FLOOR, with FLOOR being the default.

Inputs:
• x (float32): input tensor to quantize.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to be broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to be broadcast with x.
• in_bit_width (int, float32): bit-width of the input, which is restricted to be � 2. The shape is required to broadcast with x.
• out_bit_width (int, float32): bit width of the output, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): dequantized output tensor.

Fig. 2. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after cleaning. Note that the
intermediate tensors now have shape descriptions and the Shape, Gather,
Unsqueeze, Concat, and Reshape structure was collapsed into a single
Reshape operation.

Fig. 3. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after applying both cleaning
and the channels last transformation.

model execution is based on a node-level execution in Python
built with the custom node execution engine used in FINN.

Supported

Not yet
supported

CSAID AI Jamboree - Jan. 30, 2025

Trunc nodes

12

TABLE II
THE NEW QUANTIZATION OPERATORS IN THE QONNX STANDARD FORMAT.

Quant: calculate the quantized values of one input tensor and produces one output data tensor.

Attributes:
• signed (boolean): defines whether the target quantization interval is signed or not.
• narrow (boolean): defines whether the target quantization interval should be narrowed by 1. For example, at 8 bits if signed is true

and narrow is false, the target is [�128, 127] while if narrow is true, the target is [�127, 127].
• rounding_mode (string): defines how rounding should be computed during quantization. Currently available modes are: ROUND,

ROUND_TO_ZERO, CEIL, FLOOR, with ROUND implying a round-to-even operation.

Inputs:
• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to broadcast with x.
• bit_width (int, float32): the bit width for quantization, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

BipolarQuant: calculate the binary quantized values of one input tensor and produces one output data tensor.

Attributes: None
Inputs:

• x (float32): input tensor to be quantized.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to broadcast with x.

Outputs:
• y (float32): quantized then dequantized output tensor

Trunc: truncate the least significant bits (LSBs) of a quantized value, with the input’s scale and zero_point preserved.

Attributes:
• rounding_mode (string): defines how rounding should be computed during truncation. Currently available modes are: ROUND, CEIL,

and FLOOR, with FLOOR being the default.

Inputs:
• x (float32): input tensor to quantize.
• scale (float32): positive scale factor with which to compute the quantization. The shape is required to be broadcast with x.
• zero_point (float32): zero-point value with which to compute the quantization. The shape is required to be broadcast with x.
• in_bit_width (int, float32): bit-width of the input, which is restricted to be � 2. The shape is required to broadcast with x.
• out_bit_width (int, float32): bit width of the output, which is restricted to be � 2. The shape is required to broadcast with x.

Outputs:
• y (float32): dequantized output tensor.

Fig. 2. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after cleaning. Note that the
intermediate tensors now have shape descriptions and the Shape, Gather,
Unsqueeze, Concat, and Reshape structure was collapsed into a single
Reshape operation.

Fig. 3. The same part of the CNV-w2a2 model highlighting the transition
from convolutional layers to fully connected ones after applying both cleaning
and the channels last transformation.

model execution is based on a node-level execution in Python
built with the custom node execution engine used in FINN.

Not yet
supported

CSAID AI Jamboree - Jan. 30, 2025

• PyTorch has become more popular than Keras
• hls4ml, however, has traditionally focused more on Keras
• PyTorch, including Brevitas, is supported via (Q)ONNX
• Significantly improved direct PyTorch parsing, too.
• As for QONNX, we use a channels-first to channels-last conversion step for CNNs

• (A few additional improvements have been merged after rel 1.0)

Improved direct PyTorch parsing

13

CSAID AI Jamboree - Jan. 30, 2025

• The default behavior of config_from_(keras|pytoch|onnx)_model has
changed so that in “name” granularity, the precision set for all the values is “auto”.
• The default precision is only used as a backup when no better precision can be

chosen
• With an “auto” precision, the accumulator size is set to never overflow or truncate,

only using the input and weight precisions.
• The weight values are not used, just the weight types

• Warning: precisions can get quite wide when using post-training quantization.
• One can set max_precision to limit the precision width, but generally it may be

better to explicitly set some precisions in the configuration

Automatic precision inference

14

CSAID AI Jamboree - Jan. 30, 2025

• High Granularity Quantization (HGQ): per-weight or per-activation quantization

• Hardware-aware Optimization API: hardware-aware pruning and weight sharing to
reduce model footprint and computational requirements

Other improvements

15

https://fastmachinelearning.org/hls4ml/advanced/hgq.html
https://fastmachinelearning.org/hls4ml/advanced/model_optimization.html

CSAID AI Jamboree - Jan. 30, 2025

• We are updating the testing environment especially for synthesis
• Synthesis environment uses deprecated command-line interface, and does not

exercise all the backends
• Keras v3 support will be added; some question on QKeras progress
• We have a pull request to be able to write out the hls4ml internal representation
• Vitis backend structure will be updated to not inherit from Vivado
• Intel/Altera engineers have recommended some oneAPI improvements, and currently

tracing and profiling is not supported for oneAPI
• Vitis Accelerator and oneAPI Accelerator backends are planned (with completion

depending on availability of effort)
• We want to make releases more frequent

Looking forward

16

CSAID AI Jamboree - Jan. 30, 2025

Backups

17

CSAID AI Jamboree - Jan. 30, 2025

• Quant nodes are applied both on the data flow and on
weights.

• Introduce explicit Constant nodes for the weights.
– This more easily handles Quant nodes between constant

values (initializers) and operations
• Make extensive use of optimizers to convert graph to a

synthesizable code
– ONNX nodes are converted to hls4ml nodes that closely

match the ONNX nodes.
– Optimizers convert to standard Dense, Conv2D, etc

(Q)ONNX ingestion

18

Constant

val ⟨64⟩

Constant

val ⟨64x32⟩

