MINERvA's Run Plan

Deborah Harris Kevin McFarland 14 May 2013

DAH and KSM, MINERvA Run Plan

What "Run Plan" means

- Neutrino versus Antineutrino running in default Medium Energy configuration
- Schedule for changing from neutrino to antineutrino
- Plan for special runs to understand Flux
- Plan for Horn Current scans

Neutrino vs Antineutrino

- MINERvA Physics Program in ME beam focuses on DIS events and inclusive measurements over different nuclear targets
- Best physics output comes from healthy exposures in both RHC and FHC
- Example from nuclear target analysis in LE beam:
 - Statistical error at 7-9% with 1E20
 - Systematic error on ratio at 1.5%
 - Expect 5% statistical error in LE run with 4E20 POT
 - Expect ~x3 increase in evts/POT for ME tune
 - Expect /2 decrease in antineutrino
 - Statistics dominated still at 8E20
- MINERvA Request: at least 12E20 POT in each medium energy mode

14 May 2013

DAH and KSM, MINERvA Run

Response time for switching horn polarity

- MINERvA has a He-filled cryogenic target
- Filling the target costs 20k and ~3-4 weeks
- Emptying the target takes ~1 week
- MINERvA needs empty target data for every long term configuration
- Medium energy estimate: 20-25% of total POT should be in empty target configuration
- If plan is to run neutrinos for 4-6E20POT and then antineutrinos we would start with the target empty, but then we'd need to take empty target data at the end of the antineutrino run
- Plan of 4E20 or 6E20 POT needs to be established by 20%-1 month of estimated switch date

2 Extreme Examples

- NOvA says it will run for 6E20POT in neutrino mode before switching and taking 6E20POT in antineutrino mode
 - MINERvA takes 1.2E20POT empty target data
 - then fills cryostat (losing 3 weeks of He data)
 - takes another ~4.8E20 POT full target data
 - then keeps target full and takes antineutrino data
 - then empties roughly 1.2E20POT before switchback time (or later if NOvA increases nubar run time)
- NOvA says it will run for 6E20POT and then changes its mind after 3E20: then we only have 1.8E20POT full target data and 1.2E20POT empty target data

Water Target fill plan

- Water target is currently empty
- Target held in by kevlar, which has been creeping a small amount and may touch scintillator planes, don't want to fill it before beam arrives
- Takes 4 hours to fill (but do we have to take roof off?)
- Will fill target once beam power is near 200kW
- Will want neutrino and antineutrino data on target

Special Runs for MINERvA

- Took several special runs in various target positions and horn currents
- Would like to take similar data sets in medium energy beam
- What is feasibility of taking data with target moved back 250cm from target (instead of 100cm from target)?
- Low Energy studies: 7E18POT per special run
- Some special runs we took twice, and have been useful cross checks
- ~36 hours to change target positions in LE beam, doesn't make sense to take special run data for <3 days, scheduling is also important
- Would be good to take some of the higher energy beam when protons per spill is lower to minimize intensity dependent effects

Special run request: 7E18POT in horn off mode 7E18POT in "high energy" beam

Special Runs with LE target ME horn separation

- MINERvA docdb 1820, November 2009
- Want to run with LE target for 45E18
 - To better constrain the LE beam in the first place
 - To make sure we are simulating the two different targets

 Table I: Proposed Running Requests for the MINERvA Experiment (all of which require use of the LE target design with motion capability)

Before LE-to-ME Shutdown		After LE-to-ME Shutdown	
Exposure (10 ²⁰ POT)	Beam Configuraton	Exposure (10 ²⁰ POT)	Beam Configuraton
4.0	LE010cm/185kA	0.005	ME Beam Based Alignment [9]
0.15	LE010cm/150kA	0.15	ME010cm/200kA
0.15	LE010cm/200kA	0.15	ME100cm/100kA
0.15	LE010cm/000kA	0.15	ME100cm/150kA
0.15	LE100cm/200kA	0.15	ME100cm/200kA
0.15	LE150cm/200kA	0.15	ME150cm/200kA
0.15	LE250cm/200kA	0. 15 ^(a)	ME250cm/200kA
0.005	LE Beam Based Alignment [9]		Switch to ME target design

^(a)MINERvA would like a longer exposure at this ME250cm/200kA setting if NOvA is delayed.

Comparing Pions across different special run settings

14 May 2013

DAH and KSM, MINERvA Run Plan

Horn Current Scans

- Horn Current scans took only 90 minutes during LE beam era
- Expect same thing in ME era
- Will want horn current scan
 - every time we move the target
 - every time we change a target
 - any time we switch horn polarity
 - After every 2E20POT for target condition measurement
- Alcove 4 is currently being instrumented, if it is commissioned after beam starts, will need to do another horn scan with that alcove

Backups

DAH and KSM, MINERvA Run Plan

Determining the Empty/Full Running time

 Study was done looking at hitlevel simulation for reconstruction of events in D2 target (docdb 6376, PAC presentation)

DAH and KSM, MINERvA Run Plan

Horn Current Scans

Muon Monitor 1: E__> 4.2 GeV & E_> 1.8 GeV Muon Monitor 2: E₁ > 11 GeV & E₂ > 4.7 GeV Muon Monitor 3: E__> 21 GeV & E_> 9.0 GeV

50

100

Horn Current (kA)

14 May 2013

DAH and KSM, MINERvA Run Plan

200

150