

Plans for an ART based package to monitor physics relevant to intensity frontier physics experiments

Hans Wenzel May 9th 2013

Charge

- Extension of geant 4 validation effort but geared specifically towards the needs of the intensity frontier community.
- develop an ART based package for monitoring of all identified physics plots relevant to intensity frontier experiments at the model and physics list level.
- port elements of Julia's (stand alone) tests to ART and in addition integrate both EM and HAD plots into this package.
- explore the possibility to use the G4-ART interface.
- Develop tools to facilitate tests and customization of physics lists.
- The plots to monitor in this package will be associated with individual models (compared with thin target experiments aka first interaction) or physics lists, as well as with quantities to be validated with results from test beam and real experiments.
- For more complex validation, simplified geometry may be used or real configurations from the experiments could be imported to this ART application.

Intensity frontier experiments

Lots of expertise in this group that can be leveraged;

Neutrino experiments:

- Physics processes/lists of interest in general: see Julia's talk
- <u>Nova</u>: modeling of showers (calorimetry/ PFA) → talk to Steve Magill
- <u>Argon TPČ (aka the electronic bubble chamber):</u> really exciting development G4 can provide modeling of all responses involved: ionization, scintillation, Cerenkov (Jorge, Brian)

Other intensity frontier experiments:

<u>G-2:</u> artg4 developed for g-2, uses Cerenkov based calorimeter based on PbF2 \rightarrow we know how to model Cerenkov production and response in detail. (Adam Lon)

 μ 2e: stopping of muons etc. \rightarrow Krzystof, Julia

Hans Wenzel

Argon TPC: an electronic bubble chamber

Liquid Argon medium properties

	Water	Liquid Argon
Density (g/cm ³)	1	1.4
Radiation length (cm)	36.1	14.0
Interaction length (cm)	83.6	83.6
dE/dx (MeV/cm)	1.9	2.1
Refractive index (visible)	1.33	1.24
Cerenkov angle	42 °	36 °
Cerenkov d²N/dEdx (β=1)	[~] 160 eV ⁻¹ cm ⁻¹	[~] 130 eV ⁻¹ cm ⁻¹
Muon Cerenkov threshold (p in MeV/c)	120	140
Scintillation (E=0 V/cm)	No	Yes (~ 50000 γ/MeV @ λ=128nm)
Long electron drift	Not possible	Possible (μ = 500 cm²/Vs)
Boiling point @ 1 bar	373 K	87 K

When a charged particle traverses LAr:

- 1) lonization process $W_{o} = 23.6 \pm 0.3 \text{ eV}$
- 2) Scintillation (luminescence) $W_{\gamma} = 19.5 \text{ eV}$ UV "line" (λ =128 nm \Leftrightarrow 9.7 eV) No more ionization: Argon is transparent Only Rayleigh-scattering
- 3) Cerenkov light (if relativistic particle)

Charge

Scintillation light (VUV)
Cerenkov light (if β>1/n)

Hans Wenzel

VUV scintillation light readout

Hans Wenzel

9th

Mav

2013

Cerenkov light in liquid Argon

Cerenkov light readout

Cerenkov ICARUS Collab., Detection of Cerenkov light emission in liquid Argon, NIM A 516 (2004) 348 (Immersed PMT 2" EMI-9814 BQ with sensitivity up to 160 nm)

G-2 uses PbF2 crystals as ecal, em energy is detected in form of Cerenkov light. Geant 4: - model Cerenkov response

- ray tracing of all the Cerenkov photons until lost, absorbed or detected to study: uniformity, resolution, directionality,

A of charged particles produced in e⁻ showers

beta of created particles

May 9th 2013

Hans Wenzel

Technical

<u>Framework:</u> Art \rightarrow worked with it in the past

- <u>Code Repository:</u> Redmine and Git since this is used by ART and artg4 → requested to create the project (CaTS). artg4: https://cdcvs.fnal.gov/redmine/projects/artg4
- <u>Detector description:</u> options gdml e.g. used by nova/CaTS extension of Geant4., fhicl: used by artg4, custom: used by mu2e
- release management: relocatable ups???
- build system: cmake (used by Geant 4, CaTS....)
- <u>environment setup:</u> custom shell script
- <u>development machine</u>: (something with art and artg4 installed) gm2gpvm → got an account still waiting for instructions to set up the environment.
- <u>Execution</u>: for now use Geant 4 VO and (limited) grid resources to execute jobs

Technical (cont.)

Display of results: use geant 4 web application and database hosted here at fermilab (just create a new category)

 Configuration of physics lists/ processes: → discuss with Robert, look how it's done in G4

Discussion

Hans Wenzel