

Muon collider detector R&D (mcdrd): computing resources and status

Hans Wenzel May 8th 2013

Muon Collider Documentation

Created Confluence page:

https://confluence.slac.stanford.edu/display/MCPDS/Home Look for:

Documentation for Accessing MCD R&D Computing Resources

You can <u>sign</u>up here: https://jira.slac.stanford.edu/signup/

MCDRD: computing resources

**Virtual Organization (VO): mcdrd Sign up at: https://voms.fnal.gov:8443/voms/mcdrd (we have 250 dedicated slots on fermigrid and we are part of OSG)

- reference machine on the fermicloud: mcdrd.fnal.gov

- To get an account contact service desk and request a fermicloud account and request access to mcdrd.
- 1 TB of dedicated disk space on bluearc: /grid/data/ mcdrd
- software installed in: /grid/data/mcdrd/sw detectors jas-assembly-0.9.9 jdk1.7.0_21 mac slic
 - e.g. To run slic:
- . ../slic/v00-00/geant4/9.6.p01/bin/geant4.sh

/grid/data/mcdrd/sw/slic/v00-00/slic/HEAD/build/bin/slic -m run_Higgs.mac

- data available in: /grid/data/mcdrd/data

MCDRD: computing resources (cont.)

- Program
 - requested (approved): 100TB in fermilab mass storage system (dcache, enstore) --> will write instructions once it's installed and working.
 - Right now resources are limited but we can probably ask for more when we need it (easier to extend than start from scratch)

Changes to slic and Geomconverter

- Thanks to Jeremy:
- Slic now uses the latest version of geant 4 (4.9.6.p01) and new build system.
- Now optical properties can be specified in compact.xml and propagate to .lcdd and .gdml files.
- Simple switch allows to enable optical physics processes and change calorimeter into dual readout calorimeter (slow)
- Now we have the chance to kill particles entering a specific volume (e.g. the tungsten cone)

The mcdrcal01 detector in org.lcsim

5T solenoidal field, radius=3.075m

Calorimeter dimensions: Rmin: 1.36 m Rmax: 3.07 m Length: 2x3.702 m

Calorimeter Properties for Barrel and Endcaps

	EM	Hadron	Muon
Material	BGO (PbF2)	BGO (PbF2)	Iron
Density [g/cm^3]	7.13 (7.77)	7.13 (7.77)	7.85
Cell size [cm^3]	1x1x2	2x2x5	10x10x10
Layers	10	30	22
Detector Depth [cm]	20	150	220
Radiation Length [cm]	1.1 (0.93)	1.1 (0.93)	1.76
Nuclear Interaction Length [cm]	22.7 (22.4)	22.7 (22.4)	16.8
Total Nr of IA length (em +had)	7.5 (7	.6)	

Arogram

pathlength corrected time weighted by energy

Contribution of neutron Capture process in 5 GeV π⁻ showers

Response		Response due to nCapture		Fractional nCapture Response		
lonization [GeV]	Cerenkov [# C phot.]	lonization [GeV]	Cerenkov [# C phot.]	Ionization [%]	Cerenkov [%]	
4.322	1.977E5	0.734	0.456E5	17	23	

n→ thermalize → neutron Capture → γ → visible Energy

(mean Time: 4.2 µ sec)

2013

8th

Mav

Effect of dual read out correction: all contributions no gate

8th

Mav

2013

Before Dual Read out correction: Mean: 17.95 GeV σ: 0.826 +/-0.03GeV

10

After DR correction: Mean: 20.5 GeV σ: 0.66+/-0.02 GeV

Hans Wenzel

Effect of dual read out correction: γ `s from neutron Capture discarded

Before Dual Read out correction: Mean: 15.5 GeV (reduced by 13.6 %) σ: 1.21+/-0.04 GeV

After DR correction: Mean: 20.5 GeV σ: 0.68+/-0.02 GeV

Mcdrcal01: Tracker

PRODUCED BY, AN AUTODESK EDUCATIONAL PRODUCT

Simplified geometry: cylinders and disk no segmentation

Hans Wenzel

Vertex Detector barrel						
Layer	Pitch rphi	pitch z	sensor thickness	low Z	High Z	Radius
1	20	20	75	-20	20	5.40
2	20	20	75	-20	20	9.45
3	20	20	75	-20	20	13.49
4	20	20	75	-20	20	17.55
5	20	20	75	-30	30	21.59
Vertex	Detector Dis	sks				
Layer	Pitch rphi	pitch ra	sensor thicknes:	Ze	r radius ⁻	Radius
1	50	50	100	20.5	5.5	18.35
2	50	50	100	24.8	6.7	18.35
3	50	50	100	29.15	7.9	18.35
4	50	50	100	40	10.9	23.6
5	50	50	100	55	14.1	30.32
6	50	50	100	70	19.2	38.6
Tracke	r Barrel					
Layer	Pitch rphi	pitch z	sensor thicknes:	low Z	High Z	Radius
1	100	1000	200	-91	91	50
2	100	1000	200	-119	119	77
3	100	1000	200	-147	147	103
4	100	1000	200	-175	175	130
Tracke	r Disks					
Layer	Pitch rphi	pitch ra	sensor thicknes:	Ze	r radius ^r	Radius
1	100	1000	200	92	25.2	53.3
2	100	1000	200	120.75	32.7	80.8
3	100	1000	200	149	40.4	108

Program

on Accel

8th 2013

May

Caveats

- New detector description still needs to be copied to .lcsim/cache by hand!
- No Material for coil included
- Not enough iron to return flux of 5T solenoidal field
- Simulation of DR (Cerenkov photons) is very slow due to the use of the Geant 4 G4Cerenkov process. Calculating the number of produced in the optical calorimeter sensitive detector class will speed up the process significantly. Currently the data sets are without optical processes enabled.

Near term plan

• Check the detector description!

- Implement sensitive detector that counts the Cerenkov photons in slic and replaces use of G4Cerenkov.
- Provide scripts to run slic on fermigrid.
- Then generate single particle, Higgs, SM bgr. and machine bgr. once available.

Backup slides

The mcdrcal00 detector in org.lcsim

Plan

Program

- Implement sensitive detector that counts the Cerenkov photons.
- Implement sensitive detector for the tungsten cone
- Generate single particle and other data samples.

Data samples

Fully simulated events on detsim (replacement of ilcsim and ilcsim2): /ilc/sid/wenzel/muoncolliderdata/slcio/bgr /ilc/sid/wenzel/muoncolliderdata/slcio/signal

Zp3TeVtoee.slcio Zptomumu_3TeV_mcdrcal00.slcio

Plan

- Need a working detector model for the muon collider (Work with SLAC). Challenge is to deal with backgrounds while maintaining high precision (can it be done?). Needs detailed studies
- Calorimeter:
 - Dual readout (need to study how timing will affect the resolution after dual readout correction is applied) --> implement new optical calorimeter
 - Raja type: (digital sampling calorimeter with traveling time gate, software compensation)
- Tracker:
 - More like LHC than ILC, double or triple layers might be needed to help with pattern recognition. Need fast timing to reject background --> this will all come at a price (material budget)
- Once we have it: debug, biggest challenge will be to deal with the huge backgrounds and getting them into the simulation. (much more challenging than pile up at LHC and that was

Machine Backgrounds

Precision Physics @ muon collider depends on the the ability to get the machine induced BGR. (caused by muon dacay) under control

- Optimize machine parameters, proper shielding, IR, MDI
- Detector design and choice of technology--> detector simulation critical to determine detector parameters and study how it affects physics performance. Dealing with the large bgr is a huge computational problem

 \sim 4% of 1 bunch crossing, no Bethe Heitler muons

Getting muc off the ground

- Need dedicated disk area for muon collider data samples, muon collider software (currently SID)
 (may be migrate some of the ilc disk space)
- Need Muon Collider VO for grid submission
 + dedicated slots on fermigrid

Z'(3TeV)->m⁺m⁻

1.0

Analysis chain

- Get entire chain running at Fermilab (together with Alex Conway, YK student and Norman Graf)
 - Event generation (pythia)
 - Simulation (SLIC)
 - Event reconstruction (Icsim.org)
 - Analysis (jas3)
 - Documentation (confluence pages)

Invariant mass reconstruction

Steve Magill, Alex Conway, Hans Wenzel (ccal02)
Steps are as follows: Find jets--> apply dual readout correction--> correct for magnetic field contribution to invariant mass (global correction) --> use PFA algorithm to assign tracks to calorimeter clusters and use track for invariant mass calculation if match passes stringent requirement (avoid confusion term in PFA)

Invariant mass reconstruction (cont)

Program

Code is in CVS: Steve Magills contrib area name of the driver is: PFADRSelect. (but needs zip file with the correct conditions data)

