EC HV at SciBooNE

L. Ludovici
20/02/2007

“HV Review”

EC detector
HV System
Monitoring
Documentation
Maintenance
EC Physics Goals

longitudinal energy flow containment

electrons and photons final states

ν_e QE candidate π_0 CC candidate
EC Motivations

Physics capabilities
Longitudinal containment (85% at 3GeV)
Energy reconstruction (14%/√E(GeV))
electron vs (muon or pion) ID
\(\pi^0\) reconstruction

Physics output
\(\nu_e\) energy spectrum
\(\pi^0\) statistics and spectrum
Enhance PID and event classification
EC detector in Numbers

64 “spaghetti” calorimeter modules (4x8cm²x265cm): scintillating fibers embedded in a lead matrix, 1:4 fibers/lead volume ratio

Fibers Kuraray SCS-F81 in a 4x4cm² bundle to give 2 readout cells/modules read both sides by 256 PMT Hamamatsu R1355/SM (green extended), 500cm attenuation length

2 planes of 32 modules: one vertical and one horizontal. Each plane corresponds to 5.5(0.19) radiation(interaction)_lengths

Signal cables: 16 multipolar cables (16 differential pairs each)

8 QDC 32 channels CAEN V792, 16 impedance matching cards CAEN A992 (custom design)
HV System Layout

128(horiz)+128(vert) PMTs
Hamamatsu R1355/SM

2 SY527 CAEN crates
each with eight 16channels boards

430-470 μA @1700-1900V

Standard HV Cables ~22m long

Caenet-PCI A1303

PC (WinXP)
Client HV monitor
Monitoring PC (WinXP)
in the Control Room

Client /Server
Socket communication

additional clients can run in parallel

C&M softw. server
local DataBase
CAEN SY527 Features

Local/Remote parameters control: Voltages & Currents (2 values), Ramp-up, Ramp-down, Trip-off

Local/Remote controllable parameters: Voltages, Currents, Channel status, General status

Local Control Access: LCD and 21 keys keyboard

Remote Control Access: RS232, CAMAC, VME, PCI

Alarm management: Trip, OverVoltage, UnderVoltage, OverTemp., FanFailure, PowerFailure

Automatic recovery of all channel setting after PowerOn or Reset

Vmax, Imax hardware protection

Can operate both at 220V or 110V
EC HV Racks Configuration

2 mainframes SY527
http://www.caen.it/nuclear/product.php?mod=SY527

16 cards A734N
http://www.caen.it/nuclear/product.php?mod=A734

Max output 3000V, 3mA/channel
Control & Monitoring Software

As CM software we use SMACS, originally developed in Rome for the CDF-TOF

Easy configuration

Compact and hierarchycal representation of HV status, deep enough for experts but easy as well for “casual” shifters

Flexible alarm level and alarm parameters configuration (overvoltage, undervoltage, overcurrent, lowcurrent, failure)

Support of (multiples) remote monitoring clients

Hardware simulation

Abstraction layer for mixed HV environment

Scalability
Control Software (Server)

The server performs cyclic readout of the HV system to get status, voltages, currents, etc.

In case of alarm, a suitable response action can be programmed.

All “HV Events” are logged in a local DB.

A tree browser allows navigation of the HV channels. A LED represents the status of each channel.

Selecting a channel from the browser, the status voltage, current, and their time plots are accessible through tabs.

Individual channel settings can be changed interactively.
Channel Browser

SMACS - TreeView

System status: Paused

Status bits

ON

OFF

Status: Active Monitor (Alarm)

VMan (V): 2161.293
VSet (V): 1925
IMon (μA): 243.9151
ISet (μA): 250

Channels:
- Channel 1 - 396
- Channel 10 - 181
- Channel 11 - 267
- Channel 12 - 102
- Channel 13 - 399
- Channel 14 - 103
- Channel 15 - 359

Sort by crate | Sort by group
Short Term History

VMon and IMon versus time

Useful to debug problematic channels
Sampling rate user defined
Switched on upon request
Expert Histos and Plots

Built at each reading cycle:
- V0set – V0Mon
- IMon
- VMon/IMon
- VMon vs Channel
- IMon vs Channel
- VMon/Imon vs Channel

Cumulative since last reset:
- Caenet error (System)
- Caenet error vs Chann.

Histos and plots are mainly for experts;
Histos and plots parameters are configurable
Save to bitmap
Interactive access to statistical quantities
Selecting a range, the corresponding channels are shown
Online Monitoring (Client)

Client-Server communication through sockets (Winsock)

Multiple clients can run simultaneously

In normal operation the client(s) cannot modify HV settings

Geographical map of all HV channels

“One sight” overview for online shifters

Colors Green/Yellow/Red - OK/Warning/Fault

Double-Click on a channel to get status and set/monitored voltage, current
HV & SciBooNE Database

Voltage readings? Current readings? Why? Frequency, sparsification scheme? In the general DB? In an online DB?

Technically it is not an issue: in our scheme db writing can be implemented either in the client or in the server.

Our calibration procedure does not make use of the HV readings.

Find the right balance between polluting the database data seldom or never used and properly record online conditions.

$\frac{\Delta g}{\Delta V} = 0.3\% / V$ with large variation from PMT to PMT
HV Status and Schedule

Full system with C&M sw ready in CDF assembly hall

HV crates and boards are installed
The HV system is cabled (as well as the readout)
The HV control PC is installed (OS, driver, SMACCS server)
All HV channels have been tested
Preliminary HV parameter set in local Database
The HV monitoring client is ready

Before and during the coming data taking in CDF hall

Check long term stability ↔ Finalise HV parameter settings

For beam data taking

Implement collaboration agreed decision on DB policy
Documentation

Past presentations
CAEN A1303 Manual
CAEN SY527 Manual
SMACS Manual
HV cables specs

Available online from
SciBooNE at Work WebPage → Camillo's EC Page
Spares & Maintenance

Boards
We have at Fermilab 5 spare boards (16 used)

Crates
From preliminary contacts, CDF would agree to designate as common CDF/SciBooNE spare on of the two SY527 found at KTEV sometime ago. Finalize and eventually make a more formal agreement if needed.

PREP people had training in Italy as well as training at Fermilab by CAEN engineers on their HV systems. They have been giving support to the CAEN SY527 systems deployed by the CDF Collaboration
Conclusion

Rome group was supposed to provide “[...] online computers, the HV power supplies and half of the HV cables” [Internal MOU draft]

The system has been shipped, installed powered up and successfully tested well ahead the installation schedule

The system satisfies all our requirements and is ready for data taking