A Tagged Photon Beam for Detector R&D

David Christian Fermilab July 24, 2013

Why include a tagged γ beam?

- A tagged bremsstrahlung beam can be made at ASTA that will:
 - Have little impact on the e⁻ beam
 - Be very inexpensive
 - Provide an important resource for detector R&D

Low energy γs are an important background for experiments

• ORKA (K⁺ $\rightarrow \pi^+ \nu$ [anti] ν)

 $- K^+ \rightarrow \pi^+ \pi^0$ w/asymmetric π^0 decay

- K⁺ decay at rest \rightarrow min E for γ from π^0 decay = 20 MeV
- → QE (20 MeV) is often hard for EM detectors designed primarily for much higher energy
- Project X ($K^0 \rightarrow \pi^0 v$ [anti]v)

 $-K^{0} \rightarrow \pi^{0}\pi^{0}$

- Also w/asymmetric π^0 decay
- Decay in flight \rightarrow no lower limit on $E(\gamma)$

Bremsstrahlung Spectrum

- G4Beamline simulation of 1E7 e⁻ passing through 20 microns of Al (~2E-4 of Lrad)
- Need to tune for low rate (wire in beam halo?) to get 1 gamma in relevant time window.

 γs produced into a forward 10 mrad cone

Can use "Low Energy Dipole"

Field integral = 720 Gauss-M (~25 degree bend for 50 MeV) "We have spares."

Re ASTA dipoles.txt Subject: Re: ASTA dipoles? From: Mike Church schurch@fnal.gov;

From: Mike Church <church@fnal.gov> Date: 12/10/2012 12:18 PM To: David Christian <dcc@fnal.gov>

Dave,

Attached are the specs and drawings for our low energy (50 MeV) dipoles. Built by Everson-Tesla and we have spares.

Also attached are the drawings for the high energy dipoles. These magnets were a hybrid project between Fermilab Everson-Tesla. We have no spares.

Both these magnets can be viewed at ASTA.

Mike

On 12/10/2012 11:45 AM, David Christian wrote: > Hi Mike,

> Do you have specs for dipoles that will already be built for use in/by ASTA?
> I thought I might see if a standard magnet could be used for a bremsstrahlung beam.

> - Dave

Attachments: LED_spec_09_30_10.pdf 129 KB LED Magnets Design Parameters_final.doc 61.5 KB LED 53094-B DWG_final.pdf 1.4 MB dipole_assembly_color.pdf 204 KB RFP_371081-09pg.pdf 518 KB

Possible layout

- Thin wire → "minor" beam disruption
- Wire or beam can be moved while tagged beam is not in use
- No expensive parts required
 - Extra magnets (use existing spares)
 - Vacuum pipe
 - Detector array scintillator or SSD depending on available real estate

Another possibility

