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@ Effort to combine two assets at CSU:

® Accelerator expertise and existing accelerator system
® 6 MeV photocathode linac system with state-of-the-art drive laser
® Compact THz FEL

® Laser expertise and existing laser/ancillary systems
® Unique state-of-the-art laser systems
® EUV/soft x-ray microscopy/spectroscopy expertise
@ Multilayer optics expertise

@ Collaboration between research groups at CSU led by Stephen Milton, Sandra Biedron, Jorge Rocca,
Carmen Menoni, and Mario Marconi

@ Will be used for basic beam research and development (laser, particle, and combined beams)
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@ Neuron (or node) —a nonlinear function with inputs x,...x, and

associated weights w;,...w,

@ The choice of fand handling of weights depends on the problem

@ Design options

Often sigmoid functions or radial basis functions

Direct terms

Individual node biases

Number of hidden layers

Number of nodes per hidden layer

Number of output nodes X
Overall flow of data: recurrent or feed-forward

® One application: static/dynamic modeling with supervised learning

>

9

Given system input and output data, find an approximate mapping
between the two sets

Essentially, this is an optimization problem involving minimization of the X
error between the model output and the data

a neural network
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@ Black box/gray box modeling of nonlinear systems
@ Need little a priori information about the governing dynamics of the physical system

> Useful in cases where an analytic model is not available (e.g. the dynamics are prohibitively complicated for
analytical representation)

> Useful in cases where an existing model is not sufficiently accurate on its own

@ Can identify statistical correlations which may otherwise go unnoticed

@ Cases where an existing/accurate analytic model is available, but is impractical to use in real time (e.g. long
computation times, many coupled/partial differential equations)
® Neural networks can be trained on existing analytic/simulated data in order to produce a more efficient representation

@ Problems involving many variables

@ Adaptive modeling of systems which show slow changes over time scales longer than the one of primary
interest
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ORIGINAL CONTRIBUTION

Multilayer Feedforward Networks are
Universal Approximators

KURT HORNIK

Techmische Universitat Wien

MAXWELL STINCHCOMBE AND HALBERT WHITE
Unaversity of Calitornia. San Diepo
{Received 16 September 1988: revaved and accepted & March 1989)

Abstract— This paper rigorously establishes thar standard multilaver feedforward networks with as few as one
hidden layer using arbitrary squashing functions are capable of approximating any Borel measurable function
from one finite dimensional space to another 10 any desired degree of accuracy, provided sufficiently many
hidden units are available, In this sense, multilayer feedforward networks are a class of univeesal approximators
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Existing Proof of Concept: Evelyne Meier’s Ph.D. Thesis Work (co-advised by Dr. Biedron)

mums

® Multi-objective optimization of beam parameters using reinforcement

learning and a 2D objective function search space'? 7 ficsccidid
® Example: implementation at Australian Synchrotron—> transmission from 90% % o0& 3 ol '
to 97%, change in energy spread from 1.04% to 0.91% £ HHEH
;-! L(']4:::' “i
@ Neural network based feed-forward algorithms combined with PI 3
feedback3* P
® Example: implementation at LCLS = compensated for changes in energy and % 02 "“)gact“'ﬁlﬁ“ 08 1
peak current resulting from induced jitter in the klystron phase and voltage actuator
. . . . Example optimization search space
@ Showed the combined approach was more effective at correcting deliberately P (M:,-e,, Ph.D. thesis) P
induced changes in parameters than either the feed-forward neural network 0
or Pl feedback approaches individually N
E ; ;
3
® Immediate way forward from Evelyne’s work (highly summarized) : =
® Furtherincorporation of adaptive components into combined feed-forward/ 0 or oj‘zf;eq;j;a?f:y(Hz)OiA o5 os
feedback systems Example of neural network controller performance

@ Optimization with search spaces greater than 2D (Meier, Ph.D. thesis)
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@ Why ASTA?

@ ASTA would be an extremely valuable test bed for the development of novel accelerator control
schemes under demanding conditions

@ Unprecedented beam parameters at the energy/intensity frontiers
@ Use of SCRF technology

@ Wide gamut of pioneering research experiments proposed (novel controls problems/stringent
tolerances on beam parameters)

@ |Initial areas of interest
& Adaptive field and resonance control of the copper gun/superconducting RF cavities

® Modeling of beam dynamics in SCRF cavities, and control of high-energy, high-average power, space-
charge dominated beams

& Efficient system start-up/tune-up and exception handling

—“have already begun work (this week!) with RF gun cooling system
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Summary

In the long run, one thrust of CSU’s many research endeavors will be the application of Al techniques to
accelerator operation

® Incorporation of neural networks into existing control systems for added robustness/accuracy

@ Design and implementation of accelerator control systems which are capable of continuously self-
training and adjusting controller responses during machine operation

® Design of neural network based optimization tools for accelerators

- we are looking for interesting controls problems!

Development of novel controls techniques for superconducting RF systems and accelerators operating at
the energy and intensity frontiers will be essential to ensure tolerances in beam parameters are met for
future experiments (e.g. in high energy physics, nuclear/material science, imaging)

As a state-of-the-art test accelerator operating at the energy/intensity frontiers, ASTA will provide an
environment which is particularly ripe with opportunity for development and testing of novel control
schemes under demanding conditions
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Basic Methodology for Supervised Training of a Neural Network

®

®

Obtain enough data to construct both a training set and a validation set
Determine which inputs are significant (i.e. have an influence above the noise)
® Stepwise backward/forward regression of the model
Train the network(s), i.e. use optimization techniques to minimize the cost function
Optimize network topology (i.e. number of hidden nodes, layers)

Use validation set to determine if the network is sufficiently generalizable within the
parameter space in question

= Goal is to find the simplest network which minimizes the mean squared error for the

training set and for the validation set, while ensuring that these values are close to one
another
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Some Basic Training Classifications and Problem Types

® Supervised learning
® Given data input and output, find an approximate mapping between the two sets
® Used in static and dynamic modeling

® Reinforcement learning

® Given an environmental input, generate an output/conduct an action, and observe the
environmental response (with an associated cost)

® Used for finding a minimal cost interaction strategy (optimization)
® Unsupervised learning

® Given a set data, identify and assign classifications to underlying structures
® Used in clustering, dimensional reduction (with preservation of similarities)
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