Dielectric chirp corrector

Chirp correction

- Wavelength <-> bunch length
 - σ_z << λ
- Amplitude <-> aperture, A, m²
 - G ~ F x Q/A, F form factor
- Wavelength <-> aperture
 - λ~ε√A
- Single mode <-> multimode
 - $\sigma_z \ll \lambda_i$ for most i
- Transverse kick <-> optimization

VS

- $G \sim F_{dechirp} \times Q/A$
- $K \sim F_{kick} \times Q/A^2$

wake from σ_2 = 30 μ , 1nC beam, 300 μ ID / 400 μ OD quartz tube

Energy Chirp Correction Experiment at ATF

S. Antipov, et al, Phys. Rev. Lett. 108, 144801 (2012)

Tunable chirp corrector

chirp corrector is 10 cm long

Experimental results: triangular current with chirp

Spectrometer

Gap ~ 2.8mm, 2.7mm, 1.9mm, 1mm 100% charge transmission 54pC total charge, ~160keV corrected ~60keV/m/mm/pC – chirp correction number Say, 300pC beam with σ_z = 100um, goes through 1m of chirp corrector \rightarrow 1.8 MeV corrected

Rectangular beam experimental results

Conclusion / discussion

- PoP experiments demonstrated
 - General principle
 - Amplitude tuning
- Full-scale (~m) experiment is due
 - Requires the FEL-quality low emittance beam ASTA, FNAL facility
 - Alignment
 - Characterization (spectrometer resolution, kick, etc...)