Towards Ultra-Stable Operation of SRF Linacs with Beam-Based Feedback

Gang Huang, John Byrd, Larry Doolittle Claudio Rivetta, Carlos Serrano

1st ASTA User meeting and PAC Meeting 2013.7.23

Ultra stable

- Stabilize beam longitudinal phase space
- Bunch arrival time jitter
 - 25fs
- Bunch energy jitter
 10⁻⁴
- Bunch length
- energy spread

Jitter/Drift Source

- Beam property after gun
 - Laser
 - Timing/Power/Pointing
 - RF
- RF system
 - Amplitude/phase
- Others

Feedback control

• RF amplitude and phase through LLRF system

Energy, bunch length, and arrival time measurements can provide set produlation to the RF sections preceding the bunch compressor.

Laser timing amplitude pointing ...

Bandwidth

• CW or long RF pulse

– LLRF feedback bandwidth

- High beam repetition rate
 - Beam based feedback bandwidth
 - Bunch train duration 1 ms
 - Bunch frequency within train 3 MHz

FLASH beam based feedback system

• BAMs:

_

_

- PYROs:
- 1UBC2

3DBC2

4DBC3

18ACC7

- 3DBC2
- 4DBC3
- Electronic devices:
 - ACB2.1 (for BBF)
 - SimconDSP (for LLRF)
- # Overview of Longitudinal Beam Based Feedback at FLASH. Jarosław Szewiński NCBJ Świerk 4th RFTech Workshop, Annecy, 25-26.03.2013

FLASH beam based feedback system

Figure 7: Usual bunch arrival time jitter and standard deviation with beam based feedback.

Methodology

Simulation model

AB

Lawrence Berkeley National Laboratory

Beam monitors development

Bunch Energy

- relative energy measurement, BPM @ BC1

- **Bunch Compression**
 - Coherent edge/synchrotron/diffraction radiation
 - pyro- electric detector (PYRO)

pulse

pulse

ASTA LLRF

LCLS laser timing configuration

- System has 16 channel capability, 6 used
- Typical 300m fibers, 10ps correction (thermal)

Fermi@Elettra RF timing configuration

- 11 links now used, 32 possible
 - Separate 3GHz system being replaced channel by channel.

Lawrence Berkeley Nationa

APS upgrade/ Short Pulse X-ray deflecting cavity timing and LLRF

Implement feedback controls at ASTA

- Stage I
 - Characterize the beam energy, charge, timing and bunch length jitter
 - using the planned diagnostics
 - Characterize phase and amplitude jitter of the RF gun
 - Minimize the beam jitter from the injector
 - Control the photocathode drive laser
 - Control of the RF gun
 - Refine simulation code
- Stage II ...
 - Stabilize the ASTA linac
- Goal
 - Micro-pulse phase stability
 - the 25 fs regime or better
 - The energy stability
 - the 10⁻⁵ range

Scientific Opportunities

- emittance exchange
- reversible beam heating
- laser-beam interactions in electro-optical sampling or microbunching studies
- free-electron laser experiments.

