ASTA Linac Beamline configurations & capabilities

presented by P. Piot^{1,2} based on work by C. Prokop¹, D. Mihalcea¹, F. Lemery¹, M. Church², and collaborations with B. E. Carlsten³, and P. Stoltz⁴ ¹ Northern Illinois University, ² Fermilab, ³ Los Alamos National Laboratory, ⁴ Tech-X corp.

Credits: extensive use of beam-dynamics simulation codes provided by M. Borland (ANL), K. Flottmann, M Dohlus (DESY), J. Qiang and R. Ryne (LBNL)

Introduction

- Ultimately variable energy from ~50 (possibly lower) to ~800 MeV,
- High-repetition rate (1-ms rf pulse, 3 MHz rep rate):
 - Exploration of dynamical effects, e.g., in beam-driven acceleration methods.
- L-band (1.3-GHz) SCRF linac:
 - Well suited for mm/cmwavelengths beam-driven acceleration,
- Photoinjector source:
 - Provides low-emittance beam,
- Arbitrary emittance partition:
 - repartition of phase spaces to match final applications,
 - Tailored current profiles.

	parameter	nominal value	range	units
	energy exp. A1	50	[5,50]	MeV
	energy exp. A2	$\sim 300 \text{ (stage 1)}$	[50, 820]	MeV
	bunch charge Q	3.2	[0.02, 20]	nC
	bunch frequency f_b	3	see $^{(a)}$	MHz
	macropulse duration τ	1	≤ 1	\mathbf{ms}
)	macropulse frequency f_{mac}	5	[0.5, 1, 5]	Hz
	num. bunch per macro. N_b	3000	[1,3000]	_

ASTA linac Overview (injector area)

DESY-type

- Cs₂Te cathode driven by a Yb-fiber + Nd:YLF,
- two SCRF booster **cav**ities (CAV1, 2),
- Round-to-flat beam transformer (RFTB),
- Bunch compressor (BC1) + diagnostic section,
- later stage: linearizer (CAV39),

Photoinjector capabilities (1)

- nominal operating charge: $0.02 \le Q[nC] \le 3.2$
- energy $\mathcal{E} \leq 50 \, \mathrm{MeV}$
- typical expected bunch parameters scaling over the nominal charge range (for 1 laser uv pulse):
 - transverse emittance [µm]: $\varepsilon_{\perp}\simeq 2.11 Q^{0.69}$
 - longitudinal emittance [µm] $\varepsilon_{||} \simeq 30.05 Q^{0.84}$
 - uncompressed rms bunch length [mm]

[optimized with Astra (DESY) + GeneticOptimizer by Borland/Shang APS/ANL]

P. Piot, ASTA users' and PAC meeting

Flat-beam generation (on-going work)

- beams with asymmetric transverse-emittance partition can be produced
- optimized flat beams have similar 4D emittance than round beams

parameter	flat-beam	round-beam	units
	configuration	configuration	
Q	3.2	3.2	nC
E	47.18	48.77	MeV
ε_x	105.04	5.43	$\mu { m m}$
ε_y	0.31	5.44	$\mu { m m}$
ε_{4D}	5.53	5.44	$\mu { m m}$
ρ	$\simeq 334$	$\simeq 1$	_

P. Piot, ASTA users' and PAC meeting

[simulations with Impact-T/Z

(LBNL) from J. Qiang & R. Ryne

Low-energy bunch compression (2)

 overall performance of BC1 is be dominated by collective effects (LSC and CSR)

 lower charges result in higher transverse brightness

ASTA linac Overview (post ACC1 area)

- Acceleration to ~250-300 MeV in one 8-cavity cryomodule
- post cryomodule beamline:
 - transport beam to high-energy user areas + high-power dumps
 - injection in IOTA
- high-energy user area include several parallel beamline
- Further acceleration to ~800 MeV ("stage II")

post ACC1 beam optics

- Nominally designed to transport beam to HE dumps,
- possibility to transport 50 MeV + have other low-energy "insertable" experiment(s) located in transport line under consideration.

Conventional bunch-temporal shaping

- nominal bunch compression w.o. CAV39 leads to long tail (good for sampling wakes - see Lemery's talk)
- possibility to combine with dispersive scarping (see Thangaraj's talk)
- use of CAV39 to impart controlled nonlinearities (later stage)

20

-20

δ (10⁻³)

0

δ (10⁻³)

Q = 3.2

1.0

0.2

0.02 nC

Generation of a witness population

- Witness bunch produced with a birefringent crystal
- Drive/witness hierarchy preserve downstream of BC1
- Preliminary experiments planned at A0/HBESL AFTER BC1

GUN EXIT

EEX-based bunch temporal shaping

- emittance exchanger (EEX) could be used to shape the bunch current profile (bunch train, ramped bunches, ...)
- 1st experiment planned
 w. Los Alamos to explore
 performance of pulse shaper
- need SC cavities to exploit multi-bunch capabilities

12

Ultra-low-emittance low-charge beams

ransverse emittance (nm)

- See recent experiment P. Musumecci, PRSTAB 2012)
- small laser spot on photocathode or fieldemitter cathodes lead to extremely small emittances (sub-10-nm)
- produced beam are challenging to diagnose with ASTA nominal diagnostics
- Field-emission with gated cathodes could enable the production of low-charge bunches repeated at 1.3 GHz with 1 ms!

<u>,</u>

Brau, SRN (2012), W. Gabella NIMB (2013), D. Mihalcea, Phys. Script. (2013)

P. Piot, ASTA users' and PAC m

Summary

- ASTA will provide beams within a vast parameter space,
- Some of the advanced phase-space manipulations pioneered at Fermilab's A0 photoinjector are integral part of the design (flat beam) or will be installed early (EEX),
- Low-energy chicane-based bunch compression is not optimal but viable, at a later stage (after ACC1 installed), a second stage compressor will be added,
- Beam-dynamics performances of ASTA should be able to support most of the proposed experiments,
- We will be glad to collaborate and/or provide detailed calculations in support of your experiment [eventually all simulations files will be posted on ASTA web page so user can freely carry these calculations]