ASTA Low Level RF R&D

Brian Chase RD Department, Fermilab for the LLRF Team

ASTA User's Meeting July 23, 2013

ASTA LLRF Collaboration

Accelerator Division

Microwave systems MFC Board

System Support Simulations

Brian Chase Edward Cullerton Philip Varghese Barry Barnes David Vander Meulen Daniel Klepec

Computing Division ESECON Board

System Support Simulations

Gustavo Cancelo Ted Zmuda Ken Treptow

Technical Division

Motorized Tuners Piezo Tuners Control Algorithms

Yuriy Pinschanikov Warren Schappert

ASTA LLRF Overview

LLRF Performance Strategies for High Stability Beam

- Wideband (150kHz-250kHz) Proportional-Integral feedback
 - 7/9 and 8/9 pi notch filters
 - Highly linear and low noise receivers
- Beam loading compensation
 - Manual and learning feed-forward
- Aggressive resonance control
- High stability reference line
- Future gains will be from beam-based FB

NML CM1 LLRF Racks

Receivers and Up-converters

VXI CPU & 3 R3MFC Controllers

Master Oscillator

Power Supplies

Multi-channel Field Controller (MFC)

33 Channel Controller (MFC)

FPGA Signal Processing

CRYOMODULE LLRF Digital Controller Processing Block

。Y:\Projects\LLRF\Systems\NML\Software\Firmware_Docs\CM_LLRF_DigController.vsd

皮 Last Edited: 8/2/2011 P. Varghese

Phase difference between Laser port and Instrumentation port over a 20 degree temperature change (85 - 105 deg F)

* Measured in the lab using a network analyzer in a temperature controlled oven.

* Long sections of 7/8 " RFS cable replaced with short sections of tin coated .141 cable that has similar temperature characteristics.

* Measurement may have small uncertainty due to calibration drift of the network analyzer.

* Oven temperature ramped from 85 to 105 degrees F in first twenty minutes of measurement.

* Total measurement time is 1 Hour

Receiver Chain Stability Measurement vs Building Temperature

Receiver noise

Perturbation analysis

LFD compensation at **MDB FNAL**

LFD during 1,3ms RF-pulse (Fill+FlatTop) was ~2300Hz LS LFD compensation -- to less than 20Hz during 1,3ms pulse

W. Schappert, Y. Pischalnikov

First Gun Regulation Measurements

LLRF Status

- Good operational experience with CM1
 - MFC controller with 8 cavity vector sum
 - Resonance control of Lorentz Force Detuning
- Good operational experience with CC2
 - ESECON controller
- Operation of the gun in the last week (short pulse)
 - ESECON controller
 - Resonance control with water loops is progressing
- RF calibration chain of power couplers, cables and LLRF systems
- RF reference line is installed with stability tests in progress
- RF field control is in good shape waiting for beam...

Towards lower jitter beam

Develop intra train beam-based feedback using:

- BAM (Beam Arrival-time Mon.)
- •BCM (Beam Compression Mon.)

Error signals are applied to the laser and cavity RF vectors.

Intra train Beam based feedback

Julien Branlard | Beam Based Feedback at FLASH | Sept. 27th 2012 | Page 23

ELECTRICAL & COMPUTER ENGINEERING

Colorado State University

Interest from Colorado State University

- Interest in applying neural network based techniques to accelerator control systems and multi-objective parameter optimization
 - adept at black box and gray box modeling
 - incorporation of adaptive components will enable adjustments to slow changes in machine characteristics to be made automatically
 - can be combined with existing control systems and analytic models for added robustness
- Have identified some possible focus areas at ASTA
 - Adaptive field and resonance control of the copper gun
 - Adaptive resonance control of the superconducting RF cavities
 - Superconducting RF cavity field control
 - Self-calibration and control of timing drift
 - Efficient global system start up, mode control, and exception handling
- Because of its unprecedented beam parameters at the energy/intensity frontiers and use of SCRF technology, ASTA would be an extremely valuable test bed for the development of novel accelerator control schemes