

Inverse Compton Scattering Gamma-Ray Source at ASTA

Alex Murokh RadiaBeam Technologies, LLC

07/24/2013

1st Advanced Superconducting Test Accelerator (ASTA) User's Meeting and PAC Meeting

Outline

- ICS light source concept
- Applications of intense gamma ray beams
- ICS at ASTA
- Conclusions

Inverse Compton Scattering (ICS)

- ICS X-rays are generated via Doppler shift, when optical laser beam is scattered off the relativistic electrons
- ICS is directional and quasi-monochromatic

Photoinjector driven ICS

 Intense picosecond beams such as produced by photoinjectors enable high performance ICS sources.

Source bandwidth

- ICS has finite intrinsic bandwidth (besides the offaxis off-axis red-shift):
 - ✓ laser 3D focus
 - ✓ e-beam emittance
 - ✓ laser bandwidth
 - ✓ e-beam energy spread

$$\frac{\Delta k_x}{k} \approx \sqrt{2\left(\frac{\varepsilon_x}{\beta_x}\right)^2 + 2\left(\frac{\lambda}{4\pi Z_R}\right)^2}$$

$$\frac{\Delta k_l}{k} \approx \sqrt{\left(\frac{\Delta \lambda}{\lambda}\right)^2 + 4\left(\frac{\Delta \gamma}{\gamma}\right)^2}$$

- 1 nC, 1 J, 10 μ m RMS spot size at IP results in an X-ray flux of ~ 10⁹ ph. in 1/ γ opening angle per interaction
- On-axis photon flux in 1% bandwidth ~ 10^7 - 10^8 ph.

System requirements

- Historically, ICS was aimed at hard X-rays medical applications (i.e. phase-contrast imaging)
- Most practical applications require photon flux of ~ 10¹¹ cps in 1 % bandwidth
- After single shot optimization ICS requires 10³-10⁴ interactions per second (e-beam bunch trains, laser intracavity, high rep. rate)
- Stand-alone high rep. rate ICS systems suitable for practical applications are yet to be demonstrated

ICS gamma ray source

- <u>High efficiency</u> at high energy (~ 1% energy extraction efficiency, like FEL!)
- <u>Directionality</u> (~1 mrad)
- Source brightness scales like $\sim \gamma^{5}$!
- <u>Uniqueness</u> light sources do not reach MeV energies

[F.V. Hartemann et al., PR ST AB 8, 100702, 2005]

Applications: nuclear threat detection

 Gamma-ICS source can be used for stand-off detection of concealed special nuclear materials (SNM) via photofission at large range distances

[J.L. Jones et al., Neutrons Workshop at ONR, October 2006.]

Applications: nuclear waste analysis

- Nuclear resonance fluorescence (NRF) has also been proposed for SNM detection
- Also, important practical application of NRF is spent nuclear fuel casks inspection

Applications: medical isotopes R&D

- ERL based gamma ray sources for isotopes production
- Even more interesting is generation of specific activity radioisotopes via photo-excitation by tuning to specific energy gammas.

other isotope	$T_{1/2}$	daughter isotope	$T_{1/2}$	
⁴⁴ Ti	$\frac{1}{60.4}$ a	⁴⁴ Sc	$\frac{1}{3.9 \text{ h}}$	and the second sec
52 Fe	8.3 h	^{52}Mn	21 m	position sensitive
68 Ge	288 d	68 Ga	68 m	detector Target
81 Rb	4.6 h	81 Kr	$13 \mathrm{\ s}$	neutron
82 Sr	$25.0~\mathrm{d}$	82 Rb	$76 \mathrm{\ s}$	production
$^{90}\mathrm{Sr}$	$28.5 \mathrm{a}$	90 Y	64 h	
^{99}Mo	66 h	$^{99m}\mathrm{Tc}$	6.0 h	electron ERL
^{188}W	69 d	$^{188}\mathrm{Re}$	17 h	$E_n = E_r - S_n = small$ (energy recovery linac)
224 Ra	$3.7 \mathrm{~d}$	$^{212}\mathrm{Pb}^{*}$	10.6 h	
224 Ra	$3.7 \mathrm{~d}$	$^{212}\mathrm{Bi}^{*}$	$61 \mathrm{m}$	
$^{225}\mathrm{Ac}$	10 d	$^{213}\mathrm{Bi}^{*}$	$45 \mathrm{m}$	e source
				array of neutron Time-of-flight (TOF) of neutrons beam dump

Applications: new nuclear physics

- Probing nuclear matter
- Observation of "refractive" behavior above 0.7 MeV:
 - possibility of making gamma-ray optics
 - possibility of ultra-monochromatic gamma beams (1E-6)

Gamma ICS @ ASTA

Elements of the ICS system

- \checkmark High duty cycle accelerator
- Laser amplifier (25 μ J \rightarrow 5-10 mJ) and transport
- Laser intracavity (to get up to 1 J at IP)
- Dedicated beamline
- Interaction chamber (including final focus system)
- Gamma ray transport through the beam dump
- Large dynamic range gamma ray detectors

Risks

- E-beam delivery and optimization for ICS is relatively low risk assuming it follows ASTA linac commissioning and beam studies
- ICS system integration and commissioning are of moderate risk (synchronization and alignment control, optical damage and thermal issues). Leveraged on RadiaBeam ICS experience at ATF-BNL, plus the ongoing development of a high rep rate laser wire scanner at Cornell ERL
- Laser system is higher risk, and requires design study

Conclusions

- Average e-beam power and energy range at ASTA makes it an ideal and uniquely suitable facility for intense gamma ray source in the US
- Such source has many interesting applications, and very likely to attract a dynamic users community
- The cost and risk profiles are very moderate
- Thank you!

