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Foreword
we believe that simulation of an electrostatic storage ring for
the pEDM is important and should be done by more than one
method to compare and benchmark

There are codes using:

1. Integration of differential equations for orbit (Lorentz) and
spin (Thomas-BMT) with Runge-Kutta type routines

2. Map description of machine elements or of the whole lattice

3. Symplectic finite kick propagation

Each has different characteristics of symplecticity, accuracy, flex-
ibility to describe static or time-variable lattices, speed of exe-
cution.

In this contribution we will briefly describe a code M3 belonging
to type 3
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M3 orbit tracking is based on a leapfrog kick propagation.
It is a very simple algorithm.
e.g. see: Volker Springer in ”Time Integration” -2006 Helmoltz
School on Computational Astrophysics)

The algorithm can be found in some form in symplectic inte-
grators e.g.by Ronald Ruth. It was also notably proposed by S.
Mane. It seems to us to embody the fundamental requisites of
symplecticity and speed of execution required by EDM tracking.

Here, we present M3 speoifically to track orbits and spin in
a proposed electrostatic 0.7 GeV polarized proton ring for the
pEDM experiment.

M3 spin tracking is based on the code SPINK by A.Luccio, that
is also a kick propagator to match the leapfrog orbit

We will describe the formalism and present some results. Bench-
marking is in progress.
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Orbit coordinates

M3 uses Cartesian ”laboratory” coordinates (x, z, y) -not the
more common Frénet-Serret ”accelerator” coordinates- with ŷ
vertical axis, and time as the independent variable. Vertical
electric field component is calculated by a power expansion out
of the ”horizontal” x, z plane of the ring
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The circular ring lattice shown
is obtained by tracking a ”ref-
erence particle” i.e at nominal
energy injected tangentially.
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Orbit Leapfrog formalism basics
Use a ménagerie of quantities for the game

ro[m] = radius of curvature
Uo[GeV ] = mc2 rest−mass energy
a = magnetic anomaly
pc[GeV ] = Uo/

√
a moment

UT [GeV ] =
√

(pc)2 + U2
o , total energy

γ = UT/Uo, β =
√

1− 1/γ2

Bρ[V · s/m] = 109(pc)/c, rigidity
eE[eV/m] = (= pc/r0)βc Electric bend field

Leapfrog formalism directly comes from the Hamilton equations

dq

dt
=
∂H
∂p

dp

dt
= −

∂H
∂q

(1)

Hamiltonian:

H =
√

(pc)2 + (mc2)2 + eφ. (2)

4

A.U.Luccio ’leapfrog’ FNAL May 20-22
5



On 3 examples (1) circular ring, (2) race-track structure and
(3) 8-super-period structure with 8 bends, 8 drifts and 8 elec-
trostatic quadrupoles, similar to what proposed by R.Talman.

Basic leapfrog cell is a sequence

drift + momentum kick + drift

Momentum kick follows Lorentz equation
dp

dt
= qE, E = ∇φ (3)

The potential, needed for the Hamiltonian, should obey the
Laplace equation

∇2φ ≡
1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂y2
= 0. (4)

(an explicit solution is found by power expansion.)

The reference particle, around which the whole beam dances, is
the magic particle whose spin would remain frozen in position
during the propagation.
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Leapfrog cell

Discuss what happens to a reference particle confined to the
horizontal plane
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A →B →C,
drift, kick-bend, drift
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drift A-B

Start in A with Initial coordinates

(A) x = ro, z = 0, (pc)x = 0, (pc)z = pc.

Eq’s for the drift, with a time step dt for the drift A→B:

dx

dt
=

(pc)x
Uoγ

c,
dz

dt
=

(pc)z
Uoγ

c, or

x := x+ (pc)x/(Uoγ)c dt, z := z + (pc)z/(Uoγ)c dt

(5)

using the identity pc = Uoβγ, we obtain at the kick bend B the
new position

(B) x = ro, z = βc dt, (pc)x = 0, (pc)z = pc.

7

A.U.Luccio ’leapfrog’ FNAL May 20-22

8



kick in B
In B a kick is imparted to the momentum pc, using the Lorentz
Equation, with a time step δt, different from the dt of the drift.

(pc)x := (pc)x − eExc δt, (pc)z := (pc)z − eEzc δt (6)

For cylindrical bend the field E is purely radial, with components

eEx = −eE ro/r cos θ eEy = eE ro/r sin θ. (7)

Now find the relation between dt and δt for leapfrog i.e:

1. Through the bend the value of the total momentum pc
must be conserved

2. The trajectory in C should return tangent to the circle, as
in the figure. Namely:

arccos
[
(p(A) · p(C))/p2

]
= 2θ (8)

If both conditions hold, the basic trajectory will be a polygon
circumscribed to the circle. Other particles in the beam will
dance around it in betatron oscillations.
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For condition (1): moment conservation, combining the preced-
ing equations

(pc)x = −pc/r cos θ βc δt, (pc)z = pc (1− (1/r) sin θ βc δt) (9)
then after kick (C):

(pc)2
x + (pc)2

z = (pc)2
[
1 + ((βc/r)δt)2 − (2/r) sin θ βc δt

]
. (10)

Since: cos θ = z/r, sin θ = x/r, taking the value of x from Eq.(5),
the term in [ ] in Eq.(10) above reduces to 1 when we set

δt = 2 dt

For condition (2): new angle, it is calculated from the scalar
product of the momentum before and after the kick

• (A) before kick: (pc)x = 0, (pc)z = pc

• (C) after kick: (pc)x = −(pc/r) cos θ βc δt, (pc)z = pc
(

1− 2 sin2 θ
)

angle = arccos
pc(A) · pc(B)

(pc)2
= arccos

(
1− 2 sin2 θ

)
= 2θ q.e.d.

9

A.U.Luccio ’leapfrog’ FNAL May 20-22
10



Reference Trajectory

Let us produce a reference trajectory on the horizontal plane
by Leapfrog tracking along a polygonal pattern tangent to a
structure made of straights (drifts) and circular arcs (bends).
So, The leap-frog orbit is slightly longer than the reference orbit.
The more kicks we put in a bend the lesser this difference is.

In an example of a structure with 8 bends and 8 drifts of circa
270 m of total length, using 32 kicks in each bend of 36 m of
radius, the difference in effective radius between the geometrical
base line and the polygon is about 1 mm.

The step in M3 is much larger than the required step of a so-
lution by integration for similar accuracy, with a very large gain
in computing speed.

Tracking a reference particle will create a reference trajectory.
An example is shown in the following picture.
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Reference Trajectory by tracking

32 kicks per bend
bend length=28.276 m
drift length 2× 2.83 m
intra bend drift length = 0.44 m
nominal curvature radius = 36 m
Ecyl = −1.1647455107V/m
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Evaluation of the electric field
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In a general lattice the center
of curvature for the calculation
of the electric field
continuously changes
and has to be re-evaluated
every time

The sketch
(for the preceding lattice)
suggests how

’D’ is any added drift space
’d’ is a leapfrog inner-bend drift
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General tracking

The Leapfrog formalism extends to 3 dimensions and applies
unchanged to particles that don’t have a magic energy or are
injected in the lattice on a finite transverse emittance.

Eqs.(5) and .(6) in 3 dimensions are{
x := x+ (pc)x/(Uoγ)c dt
y := y + (pc)y/(Uoγ)c dt
z := z + (pc)z/(Uoγ)c dt

,
(pc)x := (pc)x − eEx2c dt
(pc)y := (pc)y − eEy2c dt
(pc)z := (pc)z − eEz2c dt

. (11)

However, In a general case the leapfrog conditions (1) for mo-
mentum and angle are not fully satisfied in a bend because, due
to transverse oscillations, the particle sees a tangential compo-
nent of the electric field that modulates the energy.

During tracking the Hamiltonian is continuously calculated. It
conserves its initial valiue.
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x,y betatron oscillations vs. turn #
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Add a RF - Example of RF bucket

Phase space of ∆× pc for two particles, with dp/p = 1.e−4 and
2.e−4, respectively, with VRF = 1000V/m and h = 24. Number

of turns for a complete oscillations is 335, corresponding
synchrotron frequency νs = 0.002985 oscillations per turn
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Briefly on Spin Dynamics: BMT equation
The code SPINK uses the T-BMT equation for the evolution of
the spin S of the proton

dS

dt
= −

q

mγ
f × S (12)

For a 1/2-spin particle, S is treated as a real 3-dimensional spin
vector. f is a function of the position, the momentum and of the
electric field encountered by the proton. In a pure electrostatic
ring f reduces to

f =
(
aγ −

γ

γ2 − 1

)
E× v

c2
. (13)

M3-SPINK calculates the kick matrix M for kick propagation of
the spin vector

S :=MS (14)

Matrix elements are function of field and dynamics variables.
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Briefly on Spin Dynamics: EDM

Spin kicks, applied at each Bend and Quad, follow the leapfrog
pattern of the orbit.

At the magic energy it is F = 0 and the spin remains frozen
If the proton has an EDM, the spin is Not completely frozen:
in the rest frame of the particle, the electric field appears as a
magnetic field B’ ⊥ to E and another small term is added to f
in Eq.(13)

B′ = −γ~β × E. f := f + ηB′ × v. (15)

The spin will make a precession around this magnetic field and
a spin vertical component will appear, that can be measured.
For a magic proton this is the only non vanishing additional spin
component.
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Spin dynamics of a frozen spin

Longit. component of the frozen spin: red line in accelerator
coordinates, green line, in laboratory coordinates. The red line
shows little wiggles because the responsible proton is on purpose
not perfectly magic and there are betatron oscillations.
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Thank You !
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