
Reliability of Predictions for the SSA in Drell-Yan

John Collins (Penn State)

• Issues in theory of TMD factorization and the Sivers sign-reversal

• Accuracy of phenomenology and quantitative predictions

Especially about dilution of Sivers asymmetry by evolution to higher Q
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However, you should review history of SSA, e.g., in pp → πX before evaluating
theoretical predictions.



Justification of TMD factorization (qT ≪ Q), Sivers sign-reversal

• Full proof with details about Wilson lines: JCC’s “Foundations of Perturbative
QCD”. Check!

• Verification in low-order graphs for SIDIS and DY
[Brodsky, Hwang, Schmidt, PL B530, 99 (2002); Brodsky, Hwang, Schmidt, NP B642, 344 (2002);

Collins, Qiu, PRD 75, 114014 (2007; Brodsky et al., arXiv:1304.5237.]

• Burkardt model gives sign reverse:
~pγ d

u

π+

Force on outgoing quark v. incoming antiquark in color field in spinning proton.
E.g., Burkardt, arXiv:1009.5442

• Lattice QCD verifies Sivers sign-reversal in suitable correlation function.

→ N.B. Better understanding of size of effects of power corrections is needed



TMD factorization for Drell-Yan with qT ≪ Q

*
dσ

d4q dΩ
=

2

s

∑

j

dσ̂j̄(Q,µ, g(µ))

dΩ

∫

d2bT eiqhT·bT f̃j/A(xA, bT; ζA, µ) f̃̄/B(xB, bT; ζB, µ)

+ poln. terms+ high-qT term+ power-suppressed

with: ζ ≃ (2× parton energy)2, ζAζB = Q4.



TMD factorization, and evolution

dσ

d4q dΩ
=

2

s

∑

j

dσ̂j̄(Q,µ, g(µ))

dΩ

∫

d2bT eiqhT·bT f̃j/A(xA, bT; ζA, µ) f̃̄/B(xB, bT; ζB, µ)

+ poln. terms+ high-qT term+ power-suppressed

CSS evolution:

∂ ln f̃f/H(x, bT; ζ;µ)

∂ ln
√
ζ

= K̃(bT;µ) (with ζ = Q2)

• Evolve to remove logarithms in perturbative regions “resummation”.

• Parameterize intrinsically non-perturbative part:

– Large bT in TMD pdfs;
– Large bT in CSS kernel K̃(bT), or corresponding function in other formalisms.

• Non-perturbative region in bT. Strikman & Weiss [JHEP 01 (2013) 163] argue for two
non-perturbative scales:
1 fm = 5GeV−1 (confinement); 0.3 fm = 1.5GeV−1 (chiral condensate).

• Also use relation of TMD pdfs to integrated pdfs at small-bT.



One solution: Factorization with fixed TMD pdfs

dσ

d4q dΩ
=

2

s

∑

j

dσ̂j̄(Q,µQ, g(µQ))

dΩ

∫

d2bT e
iqhT·bT×

× f̃f/A
(

xA, bT;m
2, µ0

)

f̃f̄/B
(

xB, bT;m
2, µ0

)

×

(

Q2

m2

)K̃(bT;µ0)

× exp

{

∫ µQ

µ0

dµ′

µ′

[

2γ(g(µ′); 1)− ln
Q2

(µ′)2
γK(g(µ′))

]

}

+ polarized terms+ large qhT correction, Y + p.s.c.

where: • µQ ∝ Q
• blue ⇔ non-perturbative and/or non-”resummed” logarithms

N.B. Perturbative analysis/prediction of TMD pdfs at small bT also used



What affects shape in qT at qT ≪ Q?

We have qT-independent factor times

∫

d2bT e
iqhT·bTf̃j/A

(

xA, bT;m
2, µ0

)

f̃̄/B
(

xB, bT;m
2, µ0

)

(

Q2

m2

)K̃(bT;µ0)

=

∫

d2bT e
iqhT·bTf̃j/A

(

xA, bT
)

f̃̄/B
(

xB, bT
)

eK̃(bT;µ0) ln(Q
2
/m

2
)

RG to deal with logarithms, segregation of non-perturbative information:

K̃(bT;µ0) = K̃(bT;µb) +

∫ µb

µ0

dµ′

µ′
γK(g(µ′))

= K̃(b
∗
;µb) +

∫ µb

µ0

dµ′

µ′
γK(g(µ′)) + K̃(bT;µb)− K̃(b

∗
;µb)

= K̃(b
∗
;µb) +

∫ µb

µ0

dµ′

µ′
γK(g(µ′))− gK(bT; bmax)

where (CSS): • b
∗
= bT/

√

1 + b2T/b
2
max, µb = C1/b∗,

• red ⇔ (treated as) non-perturbative



Evolution shifts TMD to smaller bT as Q increases

We have qT-independent factor times

∫

d2bT e
iqhT·bTf̃j/A

(

xA, bT;m
2, µ0

)

f̃̄/B
(

xB, bT;m
2, µ0

)

(

Q2

m2

)K̃(bT;µ0)

=

∫

d2bT e
iqhT·bTf̃j/A

(

xA, bT
)

f̃̄/B
(

xB, bT
)

eK̃(bT;µ0) ln(Q
2
/m

2
)

K̃(bT) is a decreasing function of bT
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So it shifts TMD to smaller bT and broadens the qT distribution . . .



Evolution in qT v. bT

Q = 11GeV√
s = 38.8GeV
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Konychev & Nadolsky, PLB 633, 710 (2006) Landry et al., PRD 67,073016 (2003)

N.B. • x-dependence of kT shape in TMD pdfs
• Sensitivity to non-perturbative region goes away at large Q



Data used in fits, etc

Data Q x ff pdf Sivers K̃

HERMES (SIDIS)
√
2.4GeV 0.04–0.3 X X X Torino

COMPASS (SIDIS)
√
3.8GeV 0.01–0.3 Predict

E288 (DY)
√
s = 27.4GeV 5–9GeV 0.18–0.33 X X KN, BLNY

E605 (DY)
√
s = 38.8GeV 7–18GeV 0.18–0.46 X X KN, BLNY

R209 (DY)
√
s = 62GeV 5–11GeV 0.08–0.18 X X KN, BLNY

D0, CDF (DY)
√
s = 1.8TeV mZ 0.05 X X KN, BLNY



Prediction for COMPASS v. HERMES

[Aybat, Prokudin, Rogers, PRL 108, 242003 (2012)]
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On basis of

• Unpolarized DY for: gK(bT) in BLNY fit (with bmax = 0.5GeV−1 = 0.1 fm)

• HERMES (Torino fit) for: fragmentation fns. unpolarized TMD pdf, Sivers

• But not non-perturbative unpolarized TMD pdfs of BLNY

N.B. Shape looks inaccurate



Problem with BLNY fit

[Landry et al., PRD 67,073016 (2003)]

• Non-perturbative factor (large bT):

exp
{

−b2T [ 0.21 + 0.68 ln(Q/3.2GeV)− 0.126 ln(100xAxB) ]
}

• Coefficient of b2T becomes negative when Q is small and xAxB large.

E.g., Q = 3.2GeV and xA = xB = 0.3,
or Q =

√
2.4GeV (HERMES) and xA = xB = 0.1,

• So fit is not applicable beyond range of fairly small bT relevant for the fitted data.

• But bmax = 0.5GeV−1 = 0.1 fm

• Konychev & Nadolsky, PLB 633, 710 (2006) use bmax = 1.5GeV−1 = 0.3 fm.
They get

gK(bT) =
0.16

2
b2 = 0.08b2, instead of gK(bT) =

0.68

2
b2 = 0.34b2

with better fit

• BLNY result =⇒ overestimate of evolution of Sivers from HERMES to COMPASS
and Polarized DY @ Fermilab



Sun & Yuan [arXiv:1304.5037v1]

• They use evolution factor

exp

{

−2CF

∫ Q

Q0

dµ

µ

αs(µ)

π

[

ln

(

Q2

µ2

)

+ ln

(

Q2
0b

2
T

c20

)

−
3

2

]}

[with c0 = 2e
−γE ]

• Logarithms of bT not resummed, no non-perturbative function

• Hence effective evolution kernel is

d ln σ̃

d lnQ2 = −CF

αs(Q)

π
ln

(

Q2
0b

2
T

c20

)

+ terms independent of bT

which is Q-dependent



Plots of K̃(bT, µ0 = 2GeV) I
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N.B. 4GeV−1 = 0.8 fm



Plots of K̃(bT) II

KN v. Sun-Yuan
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Are the results consistent?

Aybat et al. Sun & Yuan

Sivers
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• Slower evolution Q =
√
2.4GeV to Q = 9GeV; faster evolution above Q = 9GeV

• Roughly: Relevant bT: 3–4GeV−1 for HERMES 1–2GeV−1 at Q = 11GeV

• Does K̃(bT) flatten at bT & 2GeV−1?



Conclusions

• AN(DY) reduced substantially compared with HERMES

• Evolution, perturbative and non-perturbative, is controlled by K̃(bT, µ0)

• But it’s used at larger bT than where “non-perturbative” content was fit

• Probably Aybat-Prokudin-Rogers too pessimistic

• But Sun-Yuan probably too optimistic, and don’t allow for known physics issues

• We need global fit/calculation of K̃(bT, µ0)

• New fit mustn’t violate agreement with any existing data and principles

• Intrinsic TMD: Probably exponential rather than Gaussian better at large bT

• Perhaps even constant for K̃ at large bT

• We also need to evaluate effect of power corrections in factorization



EXTRA SLIDES



Power corrections (“higher twist”)

• Factorization derived up to errors suppressed by a power of Q

• SSA (Sivers-type):

– Graph-by-graph leading power if qT ≪ Q
– Suppressed by M/qT at large qT. (“Twist-3”)
– But gluon radiation (evolution) dilutes small qT SSA as Q increases
– Need answer to: Does that uncover power corrections, or are these also diluted?

• Need answer to: How accurate is factorization when Q is not large?



What form for large bT?

• Standard:

– e−const×b
2
T in TMD pdf

– e−K̃ lnQ
2

∼ e−const×b
2
T lnQ

2

in evolution

Coefficients significantly non-zero according to fits: Landry et al. PRD 67,073016
(2003), and Konychev & Nadolsky, PLB 633, 710 (2006)

• But: Euclidean correlation functions in QFT are usually e−mbT

• KN & BLNY fits are at relatively large Q (10GeV up), and hence determine
non-perturbative functions up to bT . 2GeV−1 = 0.4 fm

• But to get evolution from HERMES (Q ∼
√
2.4GeV), we need the

non-perturbative functions at larger bT: Extrapolation v. theoretical motivation,
. . .

• Need to retry fits with better forms at large bT.

• Unpolarized HERMES v. higher energy DY should be enough.


