TMD phenomenology and A_N in pp collisions

Umberto D'Alesio

Physics Department & INFN University of Cagliari, Italy

Workshop on Opportunities for Polarized Physics at FERMILAB

M. Anselmino, M. Boglione, E. Leader, S. Melis, F. Murgia, C. Pisano and A. Prokudin

Outline

- $A_N \text{ in } pp \to hX$
 - experimental status
 - theoretical approaches: Twist-3 vs. TMD approach
- TMD approach: Collins vs. Sivers effect in $pp \rightarrow h X$
- Access to the Sivers effect: $pp \to \operatorname{jet} X$ and $pp \to \gamma \, X$
- Access to the Collins effect: $pp \to \text{jet } \pi X$
- A_N at midrapidity and the gluon Sivers function
- Conclusions

SSAs in $p^{\uparrow}p \rightarrow h X$

 $A_N \equiv \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$ still challenging

$$x_F = 2p_L/\sqrt{s}$$

started long time ago

 $\sqrt{s}=20~{
m GeV}~{
m [E704~coll.~91]}$

SSAs in $p^{\uparrow}p \rightarrow h X$

 $A_N \equiv rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$ still challenging

 $x_F = 2p_L/\sqrt{s}$

confirmed at much larger energies

 $\sqrt{s} = 200 \text{ GeV} [STAR coll. 08]$

SSAs in $p^{\uparrow}p \rightarrow h X$

 $A_N \equiv rac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$ still challenging

 $x_F = 2p_L/\sqrt{s}$

and at even larger energies and at large P_T

 $\sqrt{s} = 500 \text{ GeV}$ [STAR coll. 12] [Preliminary]

- A_N : sizeable at large rapidity, increasing with x_F and P_T (RHIC)
- Theoretical approaches
 - 1. collinear pQCD factorization at twist-3: universal quark-gluon-quark correlators, (i.e. $T_F(x, x)$) [Efremov-Teryaev 82,85; Qiu-Sterman 91,92,98; Kouvaris et al. 06; Kanazawa- Koike 00,10; Kang et al. 11]
 - 2. Generalized Parton Model (GPM): TMD effects (*assuming* factorization) [Anselmino-Boglione-Murgia 95, Anselmino et al. 06; UD-Murgia 04,08; Anselmino et al. 12,13]

Motivations: phenom. point of view

- $pp \to h X$
 - suppression of the Collins effect **REVISITED**!
 - use of phenomenological information gathered from SIDIS and e^+e^- data potential role of Collins and Sivers effects in A_N in $pp \to \pi X$
 - sign mismatch issue Twist-3 qgq-correlation funct. from SIDIS Sivers funct.: wrong sign in A_N
- other final states (jet, γ , pion-jet)
 - disentangling Collins and Sivers effects and approaches
 - study of universality-breaking effects
- A_N at mid-rapidity: role, if any, of the gluon Sivers function

Twist-3 approach

Three contributions to A_N (schematic view) large x_F

 $\Phi_{q/p\uparrow}^{(3)} \otimes f_{q/p} \otimes \sigma \otimes D_{h/q} \checkmark$ able [\star] to describe A_N (FIT) [Kouvaris et al. 06] $\Delta_T q \otimes \Phi_{q\uparrow/p}^{(3)} \otimes \sigma' \otimes D_{h/q} \checkmark$ negligible [Kanazawa-Koike 00] $\Delta_T q \otimes f_{q/p} \otimes \sigma'' \otimes D_{h/q\uparrow}^{(3)}$? under study [Kang-Yuan-Zhou 10, Metz-Pitonyak 12] Notice:

- $\Phi_{q/p^{\uparrow}}^{(3)} \rightarrow T_F(x,x)$ Efremov-Teryaev-Qiu-Sterman correlation function

 \star Correction of an overall sign in the definition of gT_F [Kang et al. 11]

The sign mismatch issue

Link between Sivers and ETQS functions [Boer-Mulders-Piljman 03]

$$\int d^2 \boldsymbol{k}_{\perp} \left(\frac{\boldsymbol{k}_{\perp}^2}{M}\right) f_{1T}^{\perp q}(x, \boldsymbol{k}_{\perp}^2)|_{\text{SIDIS}} = -g \, T_F(x, x)$$

★ sign mismatch in A_N (if only T_F !) [Kang et al. 11]

Solutions:

- node in x [Kang-Prokudin 12] and/or in k_{\perp} (likely ruled out)
- TMD evolution and k_{\perp} spreading
- study of A_N in $lp \rightarrow l'X$ via $q\gamma q \iff qgq$ correlators
- additional and LARGE twist-3 effects (fragmentation sector)?

[Metz et al. 12] [Metz-Pitonyak 12]

still an open an intriguing issue!

TMD phenomenology and A_N in pp collisions 8

Collins funct. (H_1^{\perp})

TMD approach

Many contributions from nonplanar partonic kinematics (helicity formalism) [Anselmino et al. 06]

 $\Delta^{N} f_{q/p^{\uparrow}} \otimes f_{q/p} \otimes \sigma \otimes D \cos \phi_{q}$ Sivers funct. (f_{1T}^{\perp}) $\Delta_{T} q \otimes \Delta^{N} f_{q^{\uparrow}/p} \otimes \sigma' \otimes D_{h/q} \cos \psi'$ Boer-Mulders funct. (h_{1}^{\perp})

$$\Delta_T q \quad \otimes \quad f_{q/p} \quad \otimes \sigma'' \otimes \Delta^N D_{h/q^\uparrow} \cos \psi'' \quad =$$

plus others and plus contributions from gluon TMDs

 \otimes : convolutions on x, \mathbf{k}_{\perp} ; ψ 's complicate calculable azimuthal phases

Only Sivers and Collins effects survive under integration over angular depend.s

Let's consider separately the Collins and Sivers effects

Collins effect (revisited)

original claimed suppression due

- to wrong sign in the spin transfer for $qg \rightarrow qg$: one of the most important channels
- to relative cancelation with other channels: $qq \rightarrow qq$ and $q\bar{q} \rightarrow q\bar{q}$.

Role of intrinsic azimuthal phases: relevant but not totally suppressing

 \Rightarrow a new *realistic* reanalysis

[Anselmino-Boglione-UD-Leader-Melis-Murgia-Prokudin 12]

Phenomenology of the Collins effect

- use of available information on the Collins effect from SIDIS and e^+e^- data
- global fit not worth at this stage (non separable effects in pp)
- universality of the Collins function

[Collins-Metz 04, Yuan 08]

- $\Delta_T q$ not constrained at large x (SIDIS data $x \leq 0.3$) impact on A_N at large x_F

Present status - large errors

large *x* behaviour $\simeq (1 - x)^{\beta}$ with 1. $\beta = 4.74 \pm 5.45$ [Anselmino et al. 07] 2. $\beta = 0.84 \pm 2.30$ [Anselmino et al. 09] \Leftarrow 3. $\beta = 3.64^{+5.80}_{-3.37}$ [Anselmino et al. 13]

TMD phenomenology and A_N in pp collisions 11

Large-x behaviour of the transversity

$$\Delta_T q(x,k_\perp) \simeq N_q^T x^{\alpha_q} \left(1-x\right)^{\beta_q} \frac{\left[q(x) + \Delta q(x)\right]}{2} g(k_\perp) \qquad q = u, d$$

- use of isospin symmetry + only favoured and disfavoured FFs
- flavour independent parameters except β_q
- proper evolution for $\Delta_T q$, DGLAP for $\Delta^N D$
- 9 parameters to be fitted: ... β_u , β_d ...

Scan Procedure

I step

- 1. 9-parameter reference fit on SIDIS (HERMES, COMPASS) and e^+e^- (Belle) data
- 2. grid (scan) of the parameters, β_u , β_d within the range (0.0–4.0)
- 3. 7-parameter fit to SIDIS and e^+e^- data adopting the β_q -grid
- 4. selection via $\chi^2_{\text{scan}} \leq \chi^2_{\text{min}} + \Delta \chi^2 |_{\text{ref.fit}}$ (stat. uncert. band) [fulfilled by all fits]
- 5. computation of Collins pion SSA for pp collisions

example of the fit with β fixed: scan band on HERMES π^+ data

Results

Collins contribution

Envelope curves (scan band)

BRAHMS@RHIC 2007 $\sqrt{s} = 200 \text{ GeV}$ STAR@RHIC 2008

able to describe A_N for charged pions, but not the large- x_F neutral pion SSA data

Il step: further tests

- 1. best curve within the scan and computation of its statistical error band (π^0 -STAR)
- 2. allowance for full flavour dependence and back to step I (13-parameter fit)
- 3. also tried: a transversity-like evolution for the Collins function (not relevant)

Statistical uncertainty bands

Collins contribution

 \nexists a single curve *good* at low and large x_F

Same conclusions for E704 data at $\sqrt{s}=20~{\rm GeV}$

Collins effect: conclusions

- The Collins effect, corrected, is sizeable
 - 1. able to reproduce the low x_F RHIC data.
 - 2. not sufficient at large x_F , where A_N increases
- Additional mechanisms are required: the Sivers effect?

Let's consider it along the same lines

Phenomenology of the Sivers effect

- universality and TMD evolution of the Sivers function...open issues
 - no proof of a TMD factorization for $pp \rightarrow hX$
 - its twist-3 counterpart gives sizeable A_N but wrong in sign
 - including Initial-final interactions results into a "wrong" sign [Gamberg-Kang 11]
 - ansatz...same Sivers functions as in SIDIS
- use of available information on the Sivers effect from SIDIS data
 - $\Delta^N f_{q/p\uparrow}$ not constrained at $x \ge 0.3$ (SIDIS) \rightarrow impact on A_N at large x_F
 - large-x behaviour $\simeq (1-x)^{\beta}$ with
 - 1. $\beta = 0.53 \pm 3.58$ [Anselmino et al. 07]
 - 2. $\beta = 3.46^{+4.87}_{-2.90}$ [Anselmino et al. 09]

A preliminary study based on fit (1) gave very encouraging results in $pp \rightarrow \pi X$ [Boglione-UD-Murgia 08]

Again, explore the large-x behaviour of the Sivers function

$$\Delta^N f_{q/p\uparrow}(x,k_{\perp}) \simeq 2N_q^S x^{\alpha q} \left(1-x\right)^{\beta q} f_{q/p}(x,k_{\perp}) h(k_{\perp}/M)$$

- DGLAP evolution for $\Delta^N f$ [TMD ansatz]
- focus on the valence region: sea Sivers functions set to zero
- 7 parameters to be fitted: ... β_u , β_d ...

Scan Procedure

- 1. 7-parameter reference fit on SIDIS (HERMES, COMPASS) data
- 2. grid (scan) of the parameters, β_u , β_d within the range (0.0–4.0)
- 3. 5-parameter fit to SIDIS data adopting the β_q -grid
- 4. selection via $\chi^2_{\rm scan} \leq \chi^2_{\rm min} + \Delta \chi^2 |_{\rm ref.fit}$ (stat. uncert. band) [fulfilled by all fits]
- 5. computation of Sivers SSA for pp collisions

[Anselmino-Boglione-UD-Melis-Murgia-Prokudin 13]

Results

Sivers contribution

Envelope curves (scan band)

able to describe A_N for charged pions, as well as the large- x_F neutral pion SSA data

I remark about Collins vs. Sivers effect in SSAs for neutral pion production

- the Collins effect suffers from 2 possible cancellations:
 - 1. opposite sign between u and d quark transversity distributions
 - 2. opposite sign between fav. and disfav. Collins FFs [$\pi^0 = (\pi^+ + \pi^-)/2$]
- the Sivers effect suffers only 1 possible cancellation:
 - 1. opposite sign between u and d flavours in the distribution sector

II remark

- full understanding:

overall fit of SIDIS, e^+e^- and A_N data with Collins and Sivers effects [premature]

- a pragmatic view: look for a set among the Sivers scan able to describe the data
- we found more than one...and we computed its statistical error band

Results II

Sivers contribution

Best fit and statistical error band

An what about the latest *flat* STAR SSA data at 500 GeV and very large P_T ?

Smaller but compatible trend

Smaller but compatible trend...same for the Collins effect

Caution! large P_T : evolution? larger $\langle k_{\perp}^2 \rangle$?...further study needed!

Fermilab - 21 May 2013

Access to the Sivers effect: $pp \rightarrow jet X$ and $pp \rightarrow \gamma X$

- in a TMD approach only the Sivers effect could play a role

- predictions (from the *optimal* Sivers function set)

Fermilab - 21 May 2013

Access to the Sivers effect: $pp \rightarrow jet X$ and $pp \rightarrow \gamma X$

- comparison between TMD and (indirect) Twist-3 calculations
- indication of a process dependence ???

Notice: Sivers effect: stat. band; Twist-3 calculation: scan band

ूZ_{cm}

X_{cm}

Y_{cm}

Access to the Collins effect: $pp \rightarrow jet \pi X$

 $A_N \sim \cdots + \Delta_T q \otimes \Delta^N D_{\pi/q^{\uparrow}} \sin(\phi_S - \phi_{\pi}^H)$ azimuthal distribution of pions inside a jet [Yuan 08, UD-Murgia-Pisano 11]

At variance with the inclusive process $pp \rightarrow \pi X$, here TMD effects ARE separable (like SIDIS)

strong cancelation for π^0 SSA (consistent with preliminary STAR data)

TMD phenomenology and A_N in pp collisions 28

π

A_N at midrapidity: the gluon Sivers function

in a TMD approach for $pp \rightarrow \pi X$ - only the Sivers effect and gluon (sea quark) contr.s could play a role \rightarrow constraint on the gluon Sivers function [Anselmino-UD-Melis-Murgia 06]

Strategy:

- use of PHENIX data [Adler et al. 05]
- no information on the sea quark contribution: saturated to their bounds

TMD phenomenology and A_N in pp collisions 29

Fermilab - 21 May 2013

Updated analysis [preliminary]

[UD-Murgia-Pisano 13]

• use of new PHENIX data on π^0

[Koster PhD thesis 10]

 A_N compatible with zero: - No valence quark contribution - if no sea quark contr. \rightarrow vanishing gluon Sivers funct. (node?)

A more conservative strategy: let's focus on the small p_T region (small errors)

Updated analysis [preliminary]

[UD-Murgia-Pisano 13]

- use of information on the sea quark contr.n (stat. band from SIDIS)
- new upper bound for the gluon Sivers function (\simeq one- σ)

TMD phenomenology and A_N in pp collisions 31

Updated analysis [preliminary]

[UD-Murgia-Pisano 13]

- use of information on the sea quark contr.n (stat. band from SIDIS)
- new upper bound for the gluon Sivers function (\simeq one- σ)

TMD phenomenology and A_N in pp collisions 32

Conclusions

- SSAs in $pp \rightarrow hX$: still challenging from the phenom. point of view
- TMD and twist-3 approaches: both need further attention and work
- Study of A_N within a TMD scheme (assuming universality)
 - two effects could play a role in $pp \rightarrow hX$: the Collins and the Sivers effects
 - careful use of the information from SIDIS data unconstrained large x region
 - 1. the Collins effect: ok ONLY at low x_F
 - 2. the Sivers effect: ok over the most pion data in size and sign
 - 3. $pp \rightarrow jet(\gamma) X$: access to the Sivers effect and disentangling approaches
 - 4. $pp \rightarrow jet \pi X$: access the Collins effect in pp collisions
- A_N in $pp \rightarrow \pi X$ at midrapidity: access to the gluon Sivers function

Fermilab - 21 May 2013

Back-up slides

STAR@RHIC: A_N vs. p_T for different x_F bins at $\sqrt{s} = 200 \text{ GeV}$

Sivers effect: statistical band

STAR@RHIC: A_N vs. p_T for different x_F bins at $\sqrt{s} = 200$ GeV

Flavour dependence

$$\begin{split} h_{1}^{d} &< 0 \text{ and } \Delta^{N} D_{\text{unf}} < 0 : \\ A_{N}(\pi^{+}) \sim h_{1}^{u} \Delta^{N} D_{\text{fav}} + h_{1}^{d} \Delta^{N} D_{\text{unf}} = h_{1}^{u} \Delta^{N} D_{\text{fav}} + |h_{1}^{d}| |\Delta^{N} D_{\text{unf}}| > 0 \\ A_{N}(\pi^{-}) \sim h_{1}^{u} \Delta^{N} D_{\text{unf}} + h_{1}^{d} \Delta^{N} D_{\text{fav}} = -h_{1}^{u} |\Delta^{N} D_{\text{unf}}| - |h_{1}^{d}| \Delta^{N} D_{\text{fav}} < 0 \\ A_{N}(\pi^{0}) \sim (h_{1}^{u} + h_{1}^{d}) \frac{1}{2} \left[\Delta^{N} D_{\text{fav}} + \Delta^{N} D_{\text{unf}} \right] = \left[h_{1}^{u} - |h_{1}^{d}| \right] \frac{1}{2} \left[\Delta^{N} D_{\text{fav}} - |\Delta^{N} D_{\text{unf}}| \right] \end{split}$$

- up and down terms add in sign in $A_N(\pi^{\pm})$ while
- cancel each other in $A_N(\pi^0)$

Notice: if $\Delta^N D_{\mathrm{unf}} \simeq -\Delta^N D_{\mathrm{fav}} \Rightarrow A_N^{\mathrm{Collins}}(\pi^0) \simeq 0$

fit to HERMES data and statistical uncertainty band [Anselmino et al. 09]

Statistical error band

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - F(x_i; \boldsymbol{a})}{\sigma_i} \right)^2$$

- N measurements y_i at known points x_i , with variance σ_i^2 .
- $F(x_i; a)$ depends *non-linearly* on M unknown parameters a_i .
- Best fit: $\chi^2_{\min}
 ightarrow oldsymbol{a}_0$

Error band: all sets of parameters such that $\chi^2(\boldsymbol{a}_j) \leq \chi^2_{\min} + \Delta \chi^2$

- $\Delta \chi^2 = 1 \leftrightarrow 1$ - σ : small errors, uncorrelated parameters, linearity, χ^2 parabolic

- $\Delta \chi^2$: fixed according to the coverage probability

$$P = \int_0^{\Delta \chi^2} \frac{1}{2\Gamma(M/2)} \left(\frac{\chi^2}{2}\right)^{(M/2)-1} \exp\left(-\frac{\chi^2}{2}\right) \mathrm{d}\chi^2$$

P = probability that true set of parameters falls inside the M-hypervolume

 $[P = 0.68 \leftrightarrow 1\text{-}\sigma, P = 0.95 \leftrightarrow 2\text{-}\sigma]$