Green Fabry-Perot Cavity for Precision Compton Polarimetry

Abdurahim Rakhman

The Pennsylvania State University

 3^{rd} Mini-Workshop on H⁻ Laser Stripping and Accelerator Applications

Fermilab, Batavia, IL

September 26 - 27, 2013

Outline

1 Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

Introduction

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

Summary

Summary

Outline

Introduction

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

5 Summary

Polarized Electron Beam at JLab

e-Beam Polarization:

How to Measure Polarization of e-Beam ?

- e + Z → e': Mott Scattering, spin-orbit coupling of electron spin with (large Z) target nucleus, (0.1 ~ 10 MeV)
 Invasive, Different Beam
- e + γ → e' + γ': Compton Scattering, laser photons scatter from electrons (Nobel Prize !!) Non-invasive, Same Beam (> GeV)

Compton Polarimetry

- The electron beam passes through laser light on its way to the target
- Detects both scattered electron and backscattered photons
- Can extract electron beam polarization by measuring asymmetries in scattering rates for circularly polarized laser light
- The electron beam is virtually undisturbed; continuous measurement
- Very good polarimetry at high energy or/and high currents

5 / 30

Green Compton Polarimeter in Hall A at JLab

- **1** Magnatic Chicane: Four dipoles; $L_{total} = 15.35$ m
- Laser System: Nd:YAG IR (1064 nm) seed laser (CW); Yb doped fiber amplifier; Single-pass PPLN doubler (532 nm)
- Section 2.3 Fabry-Perot Cavity: L = 85 cm; G \sim 4,000; P_{cav} \sim 3.5 kW; $\alpha_c = 1.4^{\circ}$ (24 mrad)
- Electronics: Pound-Drever-Hall (PDH) feedback scheme for lock acquisition
- **Solution** Laser Polarization: Circularly polarized ($\sim 100\%$) light at the center of the cavity
- **O** Photons: Single crystal Gd₂SiO₅ (GSO) calorimeter; $\emptyset = 6$ cm; L = 15 cm
- **O** Electrons: Silicon micro-strips; 240 μ m pitch; 4 planes; 192 strips/plane
- **Goal:** Cover operating range for 5 \sim 180 μ A @ 499 MHz; 1.0 \sim 12.0 GeV; 1.0% precision in e-beam polarization measurement

Green Fabry-Perot Cavity for Precision Compton Polarimetry

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

5 Summary

Building a Frequency Doubled Green Laser

Motivation:

- Photons with higher energy (shorter wavelength) give us higher asymmetry and therefore a smaller systematic error in Compton polarimetry
- Going for green (532 nm) laser was an ultimate decision
- Commercially available green lasers sacrifice fast feedback and tunability for power
- Advancement in Yb doped fiber laser technology made the power amplification of IR (1064 nm) lasers feasible
- We use Second Harmonic Generation (SHG) to make our own 532 nm laser with the desired characteristics from our narrow linewidth (5 kHz) IR laser

Summary

Frequency Doubling Setup

- Seed Laser: NPRO Nd:YAG single-frequency ($\Delta \nu = 5 \text{ kHz}$) @ 1064 nm (JDSU Lightwave-126)
- Fiber: single-mode polarization maintaining (PM) fiber
- Fiber Amplifier: Yb doped; linearly polarized; max ouput 10 W @ 1064 nm (IPG Photonics YAR-10K-1064-LP-SF)
- Crystal: Periodically Poled Lithium Niobate (PPLN); doped with 5% MgO (HC Photonics)
- Geometry: 0.5 mm \times 3 mm \times 50 mm
- Domain Structure: $\Lambda = 6.92 \ \mu m$ with 50% duty cycle
- Oven: Homemade TEC based unit with commercial temperature controller; 0.01°C resolution (Arroyo Instruments)
- Dichroic Mirrors: Refl. @ 532 nm; Trans. @ 1064 nm
- Mode matching lenses and beam dump

SHG Efficiency

Green Fabry-Perot Cavity for Precision Compton Polarimetry

X (μm)

10 Time (hour)

Green Beam Quality

Introduction

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

5 Summary

Green Fabry-Perot Cavity for Precision Compton Polarimetry

12 / 30

Cavity Transverse Modes

$$E(r,z) = E_0 \frac{\omega_0}{\omega(z)} exp\left[-\frac{r^2}{\omega^2(z)}\right]$$
$$\omega(z) = \omega_0 \sqrt{1 + \left[\frac{z}{z_R}\right]^2}, \quad z_R = \frac{\pi \omega_0^2}{\lambda}$$
$$\omega_0^2 = \frac{L\lambda}{2\pi} \sqrt{\frac{1+g}{1-g}}, \qquad g = 1 - \frac{L}{R}$$

Hermite-Gaussian Modes:

$$I_{mn}(x,y) = I_0 \left[H_m \left(\frac{\sqrt{2}x}{\omega(z)} \right) H_n \left(\frac{\sqrt{2}y}{\omega(z)} \right) e^{\frac{-(x^2 + y^2)}{\omega(z)^2}} \right]^2$$

Experiment

Cavity Resonance

• Two highly reflective mirrors are spaced in an integer number of half-wavelengths apart

Introduction

- When the resonance conditions are met, light will build up
- There should be an active feedback either to the laser frequency or to the cavity length
- We provide frequency feedback signal to the laser in our system

Finesse :
$$\mathcal{F} = \frac{\pi\sqrt{R}}{1-R}$$
, Bandwidth : $\Delta\nu_c = \frac{FSR}{\mathcal{F}}$, Q - factor : $Q = \frac{\nu}{\Delta\nu_c}$
Decay Time : $\tau = \frac{1}{2\pi\Delta\nu_c}$, Gain : $G_{max} = \frac{T}{(L+T)^2}$

Fabry-Perot Cavity

Laser Frequency Control

- NPRO (Non-Planar Ring Oscillator) Nd:YAG laser is a fine tunable laser
- The frequency control is done by:

Introduction

- 1 Temperature control of the NPRO crystal via TEC (bandwidth ~ 1 Hz, dynamic range ~ 60 GHz)
- Applying a voltage to piezoelectric transducer (PZT) (bandwidth ~ 100 kHz, dynamic range \sim 200 MHz) bonded to the laser crystal
- PZT also enables a direct phase modulation to the seed laser head
- Fiber amplifier has a relatively narrow linewidth $(\sim 10 \text{ kHz})$ to follow
- Single-pass SH generated green beam keeps beam tunability of the seed laser

Green Fabry-Perot Cavity for Precision Compton Polarimetry

15 / 30

Pound-Drever-Hall Locking Scheme

$$\begin{aligned} \textbf{Condition}: \qquad \Delta\nu_c \ll \frac{\Omega}{2\pi} \ll FSR \\ \epsilon &= -2\sqrt{I_c I_s} \text{Im} \Big[F(\omega) F^*(\omega + \Omega) \\ &- F^*(\omega) F(\omega - \Omega) \Big] \end{aligned}$$

Cavity Mechanical Structure

Optical & Electronic Schematics

Cavity Functional View

Summary

20 / 30

Cavity Mode Matching

- Laser mode (beam) should match the cavity resonator mode
- Beam waist at the center should match the natural waist of the cavity
- Two cavity mirrors have to be highly parallel and the beam has to pass through their optical axis
- Mode matching determines the amount of primary power actually amplified in the fundamental mode
- The wavefront curvature of incoming beam must be equal to the ROC of one of the mirrors

Waist location mismatch

Green Fabry-Perot Cavity for Precision Compton Polarimetry

Waist size mismatch ω,' ωσ $\frac{\omega_0'-\omega_0}{\omega_0}$

Cavity Performance

Green Fabry-Perot Cavity for Precision Compton Polarimetry

Characterization of Cavity Parameters

Length	85 cm
Mirror ROC	0.5 m
Mirror Diameter	7.75 mm
Wavelength	532 nm, CW, TEM ₀₀
FSR	176.5 MHz
Intra-Cavity Power	\sim 3.5 kW
Optical Gain	\sim 4,000
Finesse	${\sim}13,000$
Decay Time	11.4 μ s
Mode Match Coupling	0.80
Mirror Transmission	200 ppm
Mirror Loss	30 ppm
Bandwidth	14.0 kHz
CIP spot size (σ)	87 μ m
Power Density @ CIP	\sim 10 MW/cm 2

Mirror characterization method based on: **1.** C. J. Hood, H. J. Kimble, J. Ye. Phys. Rev. A 64 (2001) 033804 **2.** N. Falletto *et al.* NIM A459 (2001) 412

Green Fabry-Perot Cavity for Precision Compton Polarimetry

Summary

Outline

Introduction

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

5 Summary

Principle of Polarization Transfer Function

Green Fabry-Perot Cavity for Precision Compton Polarimetry

Polarization Measurement at the Interaction Point

Polarization Measurement at the Cavity Exit

26 / 30

Cavity Polarization & Systematics

Cavity Polarization Transfer Function

Measurement		
DOCP (%)	Angle ($^{\circ}$)	
99.57	58.60	
-98.07	19.35	
Calcul	ation	
Calcul DOCP (%)	ation Angle (°)	
Calcul DOCP (%) 99.26	ation Angle (°) 83.52	

The measured and calculated values of DOCP and ellipse angle at the $\ensuremath{\mathsf{CIP}}$

Source of Error	Uncertainty (%)
DOCP at Exit Line	0.02
Theta at Exit Line	0.13
Variation in Time	0.04
Validation of Trans. Func.	0.48
Trans. Through M _e	0.10
Trans. Through M_s	0.10
Coupling	0.10

Total systematic error bounded to 0.7% by cavity vs. without cavity, assumed to be from other sources (birefringence of mirrors, etc.)

Summary

Electron Beam Polarization

- The scattered photon signal is integrated over each electron helicity state
- 2 The laser ON/OFF periods and photon polarization reversal is used to cancel the systematic errors from e-beam
- Measure energy-weighted average $\langle A \rangle_E$ 3
- e-beam polarization found by comparison with theoretical asymmetry $\langle A \rangle_{th}$

Introduction

Introduction

- Polarized Electron Beam at JLab
- Compton Polarimetry

2 Building a Green Laser via SHG

- Quasi-phasematching
- Frequency Doubling Setup
- Results

3 Fabry-Perot Cavity

- Cavity Transverse Modes
- Pound-Drever-Hall Locking Scheme
- Cavity Mechanics & Optics
- Cavity Performance

Beam Polarization

- Cavity Polarization Transfer Function
- Intra-Cavity Polarization Uncertainties
- Electron Beam Polarization

5 Summary

Summary & Conclusions

- Frequency locking of a frequency doubled green laser generated by seeding an Nd:YAG laser to the fiber amplifier makes the intra-cavity power scalable
- Provided Hall A at JLab with a unique laser source to carry out precision Compton polarimetry
- (a) Tested the low energy (\sim 1.0 GeV) e-beam polarimetry for the first time in JLab history
- Cavity birefringence should be studied very carefully. It is important for studying the systematic errors in polarization
- O New laser source (RF pulsed mode-locked) for future Compton polarimeter is being proposed to make the system even more precise, robust and efficient

Green Fabry-Perot Cavity for Precision Compton Polarimetry

